Skip to main content
Log in

The Question of the End Effector of Ischemic Postconditioning of the Heart

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Analysis of published data provided evidence that the main candidates for the role of the end effector for ischemic postconditioning of the heart are: 1) BK-type K+ channels (big conductance K+ channels); 2) mitochondrial ATP-sensitive K+ channels; and 3) MPT pores (mitochondrial permeability transition pores). However, some investigators believe that mitoKATP channels constitute no more than an intermediate link in the chain of signal events mediating increases in the tolerance of the heart to the actions of ischemia-reperfusion. Of these three structures, MPT pores are the most likely end effector. However, it remains possible that there is no unique molecular complex which is the sole end effector of postconditioning. It may be that there are several effectors mediating the cardioprotective effects of the adaptive postconditioning phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Gorbunov, L. N. Maslov, and T. V. Lasukova, “The cardioprotective inotropic effects of postconditioning in an isolated rat heart model,” Sib. Med. Zh. (Tomsk), 26, No. 3, Iss. 1, 125–129 (2011).

  2. I. F. Zhimulev, General and Molecular Genetics, Siberian University Press, Novosibirsk (2007).

    Google Scholar 

  3. U. S. Klaug and M. R. Cummings, Concepts of Genetics [Russian translation], Tekhnosphera, Moscow (2007).

    Google Scholar 

  4. L. N. Maslov, Yu. B. Lishmanov, I. G. Khaliulin, et al., “Uncoupling proteins and their role in regulating the resistance of the brain and heart to ischemia and reperfusion,” Ros. Fiziol. Zh., 97, No. 8, 761–780 (2011).

    CAS  Google Scholar 

  5. L. N. Maslov, A. S. Gorbunov, T. V. Lasukova, and Yu. B. Lishmanov, “Inotropic and chronotropic effects of ischemic postconditioning in isolated rat heart,” Byull. Eksperim. Biol. Med., 152, No. 12, 628–630 (2011).

    Google Scholar 

  6. L. N. Maslov, A. S. Gorbunov, and Yu. B. Lishmanov, “The cardioprotective effect of ischemic postconditioning in an isolated heart model,” Byull. Eksperim. Biol. Med., 153, No. 3, 290–291 (2012).

    Google Scholar 

  7. L. N. Maslov, A. G. Mrochek, L. Khanush, et al., “The phenomenon of ischemic postconditioning of heart,” Ros. Fiziol. Zh., 98, No. 8, 943–961 (2012).

    CAS  Google Scholar 

  8. L. N. Maslov, A. G. Mrochek, E. I. Barzakh, et al., “The trigger mechanism of the adaptive phenomenon of ischemic postconditioning of the heart,” Ros. Fiziol. Zh., 98, No. 9, 1053–1069 (2012).

    CAS  Google Scholar 

  9. L. N. Maslov, J. P. Hedrick, R. Meshoulam, et al., “The role of receptor transactivation in the cardioprotective effects of preconditioning and postconditioning,” Ros. Fiziol. Zh., 98, No. 3, 305–317 (2012).

    CAS  Google Scholar 

  10. N. N. Petrishchev, T. D. Vlasov, M. M. Galagudza, et al., “Ischemic postconditioning of the myocardium: transient ischemia induces conversion of stable reperfusional ventricular fibrillation to the normal rhythm,” Ros. Fiziol. Zh., 90, No. 9, 1138–1144 (2004).

    CAS  Google Scholar 

  11. N. V. Solenkova, L. N. Maslov and J. Downey, “ATP-dependent K+ channels and regulation of the resistance of the heart to the actions of ischemia and reperfusion,” Patol. Fiziol. Eksperim. Ter., No. 2, 28–31 (2006).

  12. E. V. Shlyakhto, M. M. Galagudza, A. V. Syrenskii, and E. M. Nifontov, “The cardioprotective effects of the phenomenon of ischemic postconditioning of the myocardium,” Kardiologiya, 45, No. 7, 44–48 (2005).

    Google Scholar 

  13. L. Aguilar-Bryan, J. P. Clement, G. Gonzalez, et al., “Toward understanding the assembly and structure of KATP channels,” Physiol. Rev., 78, No. 1, 227–245 (1998).

    PubMed  CAS  Google Scholar 

  14. M. Aldakak, D. F. Stowe, Q. Cheng, et al., “Mitochondrial matrix K+ flux independent of large-conductance Ca2+-activated K+ channel opening,” Am. J. Physiol. Cell Physiol., 298, No. 3, C530–C541 (2010).

    Google Scholar 

  15. A. Andrukhiv, A. D. Costa, I. C. West, and K. D. Garlid, “Opening mitoKATP increases superoxide generation from complex I of the electron transport chain,” Am. J. Physiol. Heart Circ. Physiol., 291, No. 5, H2067–H2074 (2006).

    PubMed  CAS  Google Scholar 

  16. H. Ardehali, Z. Chen, Y. Ko, et al., “Multiprotein complex containing succinate dehydrogenase confers mitochondrial ATP-sensitive K+ channel activity,” Proc. Natl. Acad. Sci. USA, 101, No. 32, 11880–11885 (2004).

    PubMed Central  PubMed  CAS  Google Scholar 

  17. L. Argaud, O. Gateau-Roesch, O. Raisky, et al., “Postconditioning inhibits mitochondrial permeability transition,” Circulation, 111, No. 2, 194–197 (2005).

    PubMed  CAS  Google Scholar 

  18. L. Argaud, O. Gateau-Roesch, L. Augeul, et al., “Increased mitochondrial calcium coexists with decreased reperfusion injury in postconditioned (but not preconditioned) hearts,” Am. J. Physiol. Heart Circ. Physiol., 294, No. 1, H386–H391 (2008).

    PubMed  CAS  Google Scholar 

  19. K. S. Atwal and G. J. Grover, “Treatment of myocardial ischemia with ATP-sensitive potassium channel (KATP) openers,” Curr. Pharmac. Design, 2, 585–595 (1996).

    CAS  Google Scholar 

  20. C. P. Baines, C. X. Song, Y. T. Zhang, et al., “Protein kinase Cepsilon interacts with and inhibits the permeability transition pore in cardiac and mitochondria,” Circ. Res., 92, No. 8, 873–880 (2003).

    PubMed Central  PubMed  CAS  Google Scholar 

  21. C. P. Baines, “The molecular composition of the mitochondrial permeability transition pore,” J. Mol. Biol., 46, No. 6, 850–857 (2009).

    CAS  Google Scholar 

  22. P. Bernardi, S. Vassanelli, P. Veronese, et al., “Modulation of the mitochondrial permeability transition pore. Effect of protons and divalent cations,” J. Biol. Chem., 267, No. 5, 2934–2939 (1992).

    PubMed  CAS  Google Scholar 

  23. K. Boengler, D. Hilfiker-Kleiner, G. Heusch, and R. Schulz, “Inhibition of permeability transition pore opening by mitochondrial STAT3 and its role in myocardial ischemia/reperfusion,” Basic Res. Cardiol., 105, No. 6, 771–785 (2010).

    PubMed Central  PubMed  CAS  Google Scholar 

  24. J. C. Bopassa, R. Ferrera, O. Gateau-Roesch, et al., “PI3-kinase regulates the mitochondrial transition pore in controlled perfusion and postconditioning,” Cardiovasc. Res., 69, No. 1, 178–185 (2006).

    PubMed  CAS  Google Scholar 

  25. S. Candia, M. L. Garcia, and R. Latorre, “Mode of action of iberiotoxin, a potent blocker of the large conductance Ca2+-activated K+ channel,” Biophys. J., 63, No. 2, 583–590 (1992).

    PubMed Central  PubMed  CAS  Google Scholar 

  26. C. M. Cao, Q. Xia, Q. Gao, et al., “Calcium-activated potassium channel triggers cardioprotection of ischemic preconditioning,” J. Pharmacol. Exp. Ther., 312, No. 2, 644–650 (2005).

    PubMed  CAS  Google Scholar 

  27. T. K. Chatterjee, J. A. Moy, and R. A. Fisher, “Characterization and regulation of high affinity calcitonin gene-related peptide receptors in cultured neonatal rat cardiac myocytes,” Endocrinology, 128, No. 6, 2731–2738 (1991).

    PubMed  CAS  Google Scholar 

  28. T. K. Chatterjee, J. A. Moy, J. J. Cai, et al., “Solubilization and characterization of a guanine nucleotide-sensitive form of the calcitonin gene-related peptide receptor,” Mol. Pharmacol., 43, No. 2, 167–175 (1993).

    PubMed  CAS  Google Scholar 

  29. M. V. Cohen, X. M. Yang, and J. M. Downey, “The pH hypothesis of postconditioning: staccato reperfusion reintroduces oxygen and perpetuates myocardial actions,” Circulation, 115, No. 14, 1895–1903 (2007).

    PubMed  Google Scholar 

  30. W. C. Cole, C. D. McPherson, and D. Sontag, “ATP-regulated K+ channels protect the myocardium against ischemia/reperfusion damage,” Circ. Res., 69, No. 3, 571–581 (1991).

    PubMed  CAS  Google Scholar 

  31. A. D. Costa, R. Jakob, C. L. Costa, et al., “The mechanism by which the mitochondrial ATP-sensitive K+ channel opening and H2O2 inhibit the mitochondrial permeability transition,” J. Biol. Chem., 281, No. 30, 20,801–20,808 (2006).

    CAS  Google Scholar 

  32. A. D. Costa, S. V. Pierre, M. V. Cohen, et al., “cGMP signalling in pre- and post-conditioning: the role of mitochondria,” Cardiovasc. Res., 77, No. 2, 344–352 (2008).

    PubMed  CAS  Google Scholar 

  33. T. J. Craig, F. M. Ashcroft, and P. Proks, “How ATP inhibits the open KATP channel,” J. Gen. Physiol., 132, No. 1, 131–144 (2008).

    PubMed Central  PubMed  CAS  Google Scholar 

  34. M. Crompton, A. Cost, and L. Hayat, “Evidence for the presence of a reversible Ca2+-dependent pore activated by oxidative stress in heart mitochondria,” Biochem. J., 245, No. 3, 915–918 (1987).

    PubMed Central  PubMed  CAS  Google Scholar 

  35. M. Crompton, H. Ellinger, and A. Costi, “Inhibition by cyclosporin A of a Ca2+-dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress,” Biochem. J., 255, No. 1, 357–360 (1988).

    PubMed Central  PubMed  CAS  Google Scholar 

  36. B. N. Dhawan, F. Cesselin, R. Raghubir, et al., “International Union of Pharmacology. XII. Classification of opioid receptors,” Pharmacol. Rev., 48, No. 4, 567–592 (1996).

    PubMed  CAS  Google Scholar 

  37. T. J. DiChiara and P. H. Reinhart, “Distinct effects of Ca2+ and voltage on the activation and deactivation of cloned Ca2+-activated K+ channels,” J. Physiol., 489, No. 2, 403–418 (1995).

    PubMed Central  PubMed  CAS  Google Scholar 

  38. M. Donato, V. D’Annunzio, G. Berg, et al., “Ischemic postconditioning reduces infarct size by activation of A1 receptors and K+ ATP channels in both normal and hypercholesterolemic rabbits,” J. Cardiovasc. Pharmacol., 49, No. 5, 287–292 (2007).

    PubMed  CAS  Google Scholar 

  39. J. Dow, A. Bhandari, and R. A. Kloner, “The mechanism by which ischemic postconditioning reduces reperfusion arrhythmias in rats remains elusive,” J. Cardiovasc. Pharmacol. Ther., 14, No. 2, 99–103 (2009).

    PubMed  CAS  Google Scholar 

  40. X. Duan, B. Ji, K. Yu, et al., “Pharmacological postconditioning protects isolated rat hearts against ischemia-reperfusion injury: the role of mitochondrial permeability transition pore,” ASAIO J., 57, No. 3, 197–202 (2011).

    PubMed  CAS  Google Scholar 

  41. J. Fang, L. Wu, and L. Chen, “Postconditioning attenuates cardiocyte ultrastructure injury and apoptosis by blocking mitochondrial permeability transition in rats,” Acta Cardiol., 63, No. 3, 377–387 (2008).

    PubMed  Google Scholar 

  42. R. Ferrera, J. C. Bopassa, D. Angoulvant, and M. Ovize, “Post-conditioning protects from cardioplegia and cold ischemia via inhibition of mitochondrial permeability transition pore,” J. Heart Lung Transplant, 26, No. 6, 604–609 (2007).

    PubMed  Google Scholar 

  43. B. B. Fredholm, A. P. Jzerman, K. A. Jacobson, et al., “International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors,” Pharmacol. Rev., 53, No. 4, 527–552 (2001).

    PubMed  CAS  Google Scholar 

  44. L. Fretwell and J. M. Dickenson, “Role of large-conductance Ca2+-activated K+ channels in adenosine A1 receptor-mediated pharmacological postconditioning in H9c2 cells,” Can. J. Physiol. Pharmacol., 89, No. 1, 24–30 (2011).

    PubMed  CAS  Google Scholar 

  45. M. M. Galagudza, I. O. Blokhin, A. A. Shmonin, and K. A. Mischenko, “Reduction of myocardial ischemia-reperfusion injury with pre- and postconditioning: molecular mechanisms and therapeutic targets,” Cardiovasc. Hematol. Disord. Drug Targets, 8, No. 1, 47–65 (2008).

    PubMed  CAS  Google Scholar 

  46. A. Galvez, G. Gimenez-Gallego, J. P. Reuben, et al., “Purification and characterization of a unique, potent, peptidyl probe for the high conductance calcium-activated potassium channel from venom of the scorpion Buthus tamulus,” J. Biol. Chem., 265, No. 19, 11083–11090 (1990).

    PubMed  CAS  Google Scholar 

  47. K. D. Garlid, P. Paucek, V. Yarov-Yarovoy, et al., “Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels: Possible mechanisms of cardioprotection,” Circ. Res., 81, No. 6, 1072–1082 (1997).

    PubMed  CAS  Google Scholar 

  48. K. D. Garlid and A. P. Halestrap, “The mitochondrial KATP channel – fact or fiction?” J. Mol. Cell. Cardiol., 52, No. 3, 578–583 (2012).

    PubMed Central  PubMed  CAS  Google Scholar 

  49. O. Gateau-Roesch, L. Argaud, and M. Ovize, “Mitochondrial permeability transition pore and postconditioning,” Cardiovasc. Res., 70, No. 2, 264–273 (2006).

    PubMed  CAS  Google Scholar 

  50. L. Gomez, H. Thibault, A. Gharb, et al., “Inhibition of mitochondrial permeability transition improves functional recovery and reduces mortality following acute myocardial infarction in mice,” Am. J. Physiol. Heart Circ. Physiol., 293, No. 3, 1654–H1661 (2007).

    Google Scholar 

  51. L. Gomez, M. Paillard, H. Thibault, et al., “Inhibition of GSK3β by postconditioning is required to prevent opening of the mitochondrial permeability transition pore during reperfusion,” Circulation, 117, No. 21, 2761–2768 (2008).

    PubMed  CAS  Google Scholar 

  52. E. J. Griffiths and A. P. Halestrap, “Protection by cyclosporin A of ischemia/reperfusion-induced damage in isolated rat hearts,” J. Mol. Cell. Cardiol., 25, No. 12, 1461–1469 (1993).

    PubMed  CAS  Google Scholar 

  53. E. J. Griffiths and A. P. Halestrap, “Mitochondrial non-specific pores remain closed during cardiac ischemia, but open upon reperfusion,” Biochem. J., 307, No. 1, 93–98 (1995).

    PubMed Central  PubMed  CAS  Google Scholar 

  54. G. H. Gross and R. M. Fryer, “Sarcolemmal versus mitochondrial ATP-sensitive K+ channels and myocardial preconditioning,” Circ. Res., 84, No. 9, 973–979 (1999).

    PubMed  CAS  Google Scholar 

  55. G. J. Grover, J. R. McCullough, D. E. Henry, et al., “Anti-ischemic effects of the potassium channel activators pinacidil and cromakalim and the reversal of these effects with the potassium channel blocker glyburide,” J. Pharmacol. Exp. Ther., 251, No. 1, 98–104 (1989).

    PubMed  CAS  Google Scholar 

  56. G. J. Grover, S. Dzwonczyk, C. S. Parham, and P. G. Sleph, “The protective effects of cromakalim and pinacidil on reperfusion function and infarct size in isolated perfused rat hearts and anesthetized dogs,” Cardiovasc. Drugs Ther., 4, No. 2, 465–474 (1990).

    PubMed  CAS  Google Scholar 

  57. G. J. Grover, “Protective effects of ATP-sensitive potassium-channel openers in experimental myocardial ischemia,” J. Cardiovasc. Pharmacol., 24, Suppl. 4, S18–S27 (1994).

    PubMed  CAS  Google Scholar 

  58. G. J. Grover and K. D. Garlid, “ATP-sensitive potassium channels: a review of their cardioprotective pharmacology,” J. Mol. Cell. Cardiol., 32, No. 4, 677–695 (2000).

    PubMed  CAS  Google Scholar 

  59. A. P. Halestrap, “Calcium-dependent opening of a non-specific pore in the mitochondrial inner membrane is inhibited at pH values below 7. Implications for the protective effect of low pH against chemical and hypoxic cell damage,” Biochem. J., 278, No. 3, 715–719 (1991).

    PubMed Central  PubMed  CAS  Google Scholar 

  60. A. P. Halestrap and C. Brenner, “The adenine nucleotide translocase: a central component of the mitochondrial permeability transition pore and key player in cell death,” Curr. Med. Chem., 10, No. 16, 1507–1525 (2003).

    PubMed  CAS  Google Scholar 

  61. A. P. Halestrap, “A pore way to die: the role of mitochondria in reperfusion injury and cardioprotection,” Biochem. Soc. Trans., 38, No. 4, 841–860 (2010).

    PubMed  CAS  Google Scholar 

  62. D. J. Hausenloy, H. L. Maddock, G. F. Baxter, and D. M. Yellon, “Inhibiting mitochondrial permeability transition pore opening: a new paradigm for myocardial preconditioning?” Cardiovasc. Res., 55, No. 3, 534–543 (2002).

    PubMed  CAS  Google Scholar 

  63. R. A. Haworth and D. A. Huner, “The Ca2+-induced membrane transition in mitochondria. II. Nature of the Ca2+ trigger site,” Arch. Biochem. Biophys., 195, No. 2, 460–467 (1979).

    PubMed  CAS  Google Scholar 

  64. Y. He, Z. Y. Zeng, G. Q. Zhong, et al., “Mitochondrial connexin43 and postconditioning protection in rabbits underwent myocardial ischemia/reperfusion injury,” Chin. J. Cardiol., 38, No. 4, 357–362 (2010).

    CAS  Google Scholar 

  65. R. Huhn, A. Heinin, N. C. Weber, et al., “Ischaemic and morphine-induced post-conditioning: impact of mKCa channels,” Br. J. Anaesth., 105, No. 5, 589–595 (2010).

    PubMed  CAS  Google Scholar 

  66. D. R. Hunter and R. A. Haworth, “The Ca2+-induced membrane transition in mitochondria. I. The protective mechanisms,” Arch. Biochem. Biophys., 195, No. 2, 453–459 (1979).

    PubMed  CAS  Google Scholar 

  67. D. R. Hunter and R. A. Haworth, “The Ca2+-induced membrane transition in mitochondria. III. Transitional Ca2+ release,” Arch. Biochem. Biophys., 195, No. 2, 468–477 (1979).

    PubMed  CAS  Google Scholar 

  68. I. Inoue, H. Nagase, K. Kishi, and T. Higuti, “ATP-sensitive K+ channel in the mitochondrial inner membrane,” Nature, 352, No. 6332, 244–247 (1991).

    PubMed  CAS  Google Scholar 

  69. J. Jang, J. Xi, H. Wang, et al., “Postconditioning prevents reperfusion injury by activating δ-opioid receptors,” Anesthesiology, 108, No. 2, 243–250 (2008).

    PubMed  CAS  Google Scholar 

  70. Z. Jiang, M. Wallner, P. Meera, and L. Toro, “Human and rodent MaxiK channel β-subunit genes: cloning and characterization,” Genomics, 55, No. 1, 57–67 (1999).

    PubMed  CAS  Google Scholar 

  71. C. Jin, J. Wu, M. Watanabe, et al., “Mitochondrial K+ channels are involved in ischemic postconditioning in rat hearts,” J. Physiol. Sci., 62, No. 4, 325–332 (2012).

    PubMed  CAS  Google Scholar 

  72. M. Juhaszova, D. B. Zorov, Y. Yaniv, et al., “Role of glycogen synthase kinase-3β in cardioprotection,” Circ. Res., 104, No. 11, 1240–1252 (2009).

    PubMed Central  PubMed  CAS  Google Scholar 

  73. J. S. Kim, L. He, and J. J. Lemasters, “Mitochondrial permeability transition: a common pathway to necrosis and apoptosis,” Biochem. Biophys. Res. Commun., 304, No. 3, 463–470 (2003).

    PubMed  CAS  Google Scholar 

  74. G. Kroemer, L. Galluzzi, and C. Brenner, “Mitochondrial membrane permeabilization in cell death,” Physiol. Rev., 87, No. 1, 99–163 (2007).

    PubMed  CAS  Google Scholar 

  75. Z. Lacza, J. A. Snipes, A. W. Miller, et al., “Heart mitochondria contain functional ATP-dependent K+ channels,” J. Mol. Cell. Cardiol., 35, No. 11, 1339–1347 (2003).

    PubMed  CAS  Google Scholar 

  76. L. M. Leeb-Lundberg, F. Marceau, W. Müller-Esterl, et al., “International Union of Pharmacology. XLV. Classification of the kinin receptor family: from molecular mechanisms to pathophysiological consequences,” Pharmacol. Rev., 57, No. 1, 27–77 (2005).

    PubMed  CAS  Google Scholar 

  77. W. J. Leonard and J. J. O’Shea, “Jaks and STATs: biological implications,” Annu. Rev. Immunol., 16, 293–322 (1998).

    PubMed  CAS  Google Scholar 

  78. S. Y. Lim, S. M. Davidson, D. J. Housenloy, and D. M. Yellon, “Preconditioning and postconditioning: the essential role of the mitochondrial permeability transition pore,” Cardiovasc. Res., 75, No. 3, 530–535 (2007).

    PubMed Central  PubMed  CAS  Google Scholar 

  79. R. Lu, A. Alioua, Y. Kumar, et al., “MaxK channel partners: physiological impact,” J. Physiol., 570, No. 1, 65–72 06

  80. R. MacKinnon, P. H. Reinhart, and M. M. White, “Charybdotoxin block of Shaker K+ channels suggests that different types of K+ channels share common structural features,” Neuron, 1, No. 10, 997–1001 (1988).

    PubMed  CAS  Google Scholar 

  81. C. Miller, E. Moczydlowski, R. Latorre, and M. Phillips, “Charybdotoxin, a protein inhibitor of single Ca2+-activated K+ channels from mammalian skeletal muscle,” Nature, 313, No. 6000, 316–318 (1985).

    PubMed  CAS  Google Scholar 

  82. Y. Murozono, N. Takahashi, T. Shinohara, et al., “Hyperthermia-induced cardioprotection is potentiated by ischemic postconditioning in rats,” Exp. Biol. Med. (Maywood), 234, No. 5, 573–581 (2009).

    CAS  Google Scholar 

  83. C. E. Murry, R. B. Jennings, and K. A. Reimer, “Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium,” Circulation, 74, No. 5, 1124–1136 (1986).

    PubMed  CAS  Google Scholar 

  84. J. Mykytenko, J. G. Reeves, H. Kin, et al., “Persistent beneficial effect of postconditioning against infarct size: role of mitochondrial KATP channels during reperfusion,” Basic Res. Cardiol., 103, No. 5, 472–484 (2008).

    PubMed  CAS  Google Scholar 

  85. H. Nishida, T. Sato, M. Nomura, et al., “Glimepiride treatment upon reperfusion limits infarct size via the phosphatidyl inositol 3-kinase/Akt pathway in rabbit hearts,” J. Pharmacol. Sci., 109, No. 2, 251–256 (2009).

    PubMed  CAS  Google Scholar 

  86. A. Noma, “ATP-regulated K+ channels in cardiac muscle,” Nature, 305, No. 5930, 147–148 (1983).

    PubMed  CAS  Google Scholar 

  87. P. Orio, P. Rojas, G. Ferreira, and R. Latorre, “New disguises for an old channel: MaxiK channel β-subunits,” News Physiol. Sci., 17, 156–161 (2002).

    PubMed  CAS  Google Scholar 

  88. B. Ostadal and F. Kolar, Cardiac Ischemia: From Injury to Protection, Kluwer Academic Publishers, Boston, Dordrecht, London (1999).

    Google Scholar 

  89. M. Paillard, L. Gomez, L. Augeul, et al., “Postconditioning inhibits mPTGP opening independent of oxidative phosphorylation and membrane potential,” J. Mol. Cell. Cardiol., 46, No. 6, 902–999 (2009).

    PubMed  CAS  Google Scholar 

  90. L. Y. Peng, H. Ma, J. G. He, et al., “Ischemic postconditioning attenuates ischemia/reperfusion injury in isolated hypertrophied rat heart,” Chin. J. Cardiovasc. Dis., 34, No. 8, 685–689 (2006).

    CAS  Google Scholar 

  91. C. Penna, R. Rastaldo, D. Mancardi, et al., “Post-conditioning induced cardioprotection requires signaling through a redox-sensitive mechanism, mitochondrial ATP-sensitive K+ channel and protein kinase C activation,” Basic Res. Cardiol., 101, No. 2, 180–189 (2006).

    PubMed  CAS  Google Scholar 

  92. C. Penna, D. Mancardi, R. Rastaldo, et al., “Intermittent activation of bradykinin B2 receptors and mitochondrial KATP channels trigger cardiac postconditioning through redox signaling,” Cardiovasc. Res., 75, No. 1, 168–177 (2007).

    PubMed  CAS  Google Scholar 

  93. P. Pennefather, B. Lancaster, P. R. Adams, and R. A. Nicoll, “Two distinct Ca-dependent K currents in bullfrog sympathetic ganglion cells,” Proc. Natl. Acad. Sci. USA, 82, No. 9, 3040–3044 (1985).

    PubMed Central  PubMed  CAS  Google Scholar 

  94. O. H. Petersen and Y. Maruyama, “Calcium-activated potassium channels and their role in secretion,” Nature, 307, No. 5953, 693–696 (1984).

    PubMed  CAS  Google Scholar 

  95. O. Pongs, N. Kecskemethy, R. Müller, et al., “Shaker encodes a family of putative potassium channel proteins in the nervous system of Drosophila,” EMBO J., 7, No. 4, 1087–1096 (1988).

    PubMed Central  PubMed  CAS  Google Scholar 

  96. I. Quesada, J. M. Rovira, F. Martin, et al., “Nuclear KATP channels trigger nuclear Ca2+ transients that modulate nuclear function,” Proc. Natl. Acad. Sci. USA, 99, No. 14, 9544–9549 (2002).

    PubMed Central  PubMed  CAS  Google Scholar 

  97. T. Sato, H. Nishida, M. Miyazaki, and H. Makaya, “Effects of sulfonylureas on mitochondrial ATP-sensitive K+ channels in cardiac myocytes: implications for sulfonylurea controversy,” Diabetes Metab. Res. Rev., 22, No. 5, 341–347 (2006).

    PubMed  CAS  Google Scholar 

  98. T. L. Schwartz, B. L. Tempel, D. M. Papazian, et al., “Multiple potassium-channel components are produced by alternative splicing at the Shaker locus on Drosophila,” Nature, 331, No. 6152, 137–142 (1988).

    Google Scholar 

  99. D. Siemen, C. Loupatatzis, J. Borecky, et al., “Ca2+-activated K channel of the BK-type in the inner mitochondrial membrane of a human glioma cell line,” Biochem. Biophys. Res. Commun., 257, No. 2, 549–554 (1999).

    PubMed  CAS  Google Scholar 

  100. C. Smith, M. Phillips, and C. Miller, “Purification of charybdotoxin, a specific inhibitor of the high-conductance Ca2+-activated K+ channel,” J. Biol. Chem., 261, No. 31, 14,607–14,613 (1986).

    CAS  Google Scholar 

  101. J. P. Springer, J. Clardy, J. M. Wells, et al., “The structure of paxilline, a tremorgenic metabolite of Penicillium paxilli Bainier,” Tetrahedron Lett., 16, No. 30, 2531–2534 (1975).

    Google Scholar 

  102. D. Strobeck, P. Christopherson, N. B. Holm, et al., “Modulation of the Ca2+-dependent K+ channel, hslo, by the substituted diphenylurea NS 1608, paxilline and internal Ca2+,” Neuropharmacology, 35, No. 7, 903–914 (1996).

    Google Scholar 

  103. M. Suzuki, T. Saito, T. Sato, et al., “Cardioprotective effect of diazoxide is mediated by activation of sarcolemmal but not mitochondrial ATP-sensitive potassium channels in mice,” Circulation, 107, No. 5, 682–685 (2003).

    PubMed  CAS  Google Scholar 

  104. S. Tamareilla, N. Ghaboura, F. Treguer, et al., “Myocardial reperfusion injury management: erythropoietin compared with postconditioning,” Am. J. Physiol. Heart Circ. Physiol., 297, No. 6, H2035–H2043 (2009).

    Google Scholar 

  105. H. L. Tan, P. Mazon, H. J. Verberne, et al., “Ischaemic preconditioning delays ischaemia induced cellular electrical uncoupling in rabbit myocardium by activation of ATP sensitive potassium channels,” Cardiovasc. Res., 27, No. 4, 644–651 (1993).

    PubMed  CAS  Google Scholar 

  106. Y. Tian, W. Zhang, D. Xa, et al., “Postconditioning inhibits myocardial apoptosis during prolonged reperfusion via a JAK2-STST3-Bcl-2 pathway,” J. Biomed. Sci., 18, 53, (2011).

    PubMed Central  PubMed  CAS  Google Scholar 

  107. A. Trautmann and A. Marty, “Activation of Ca-dependent K channels by carbamoylcholine in rat lacrimal glands,” Proc. Natl. Acad. Sci. USA, 81, No. 2, 611–615 (1984).

    PubMed Central  PubMed  CAS  Google Scholar 

  108. J. Tseng-Crank, C. D. Foster, J. D. Krause, et al., “Cloning, expression, and distribution of functionally distinct Ca2+-activation K+ channel isoforms from human brain,” Neuron, 13, No. 6, 1315–1330 (1994).

    PubMed  CAS  Google Scholar 

  109. A. Tsuchida, T. Miura, T. Miki, et al., “Critical timing of mitochondrial KATP channel opening for enhancement of myocardial tolerance against infarction,” Basic Res. Cardiol., 96, No. 5, 446–453 (2001).

    PubMed  CAS  Google Scholar 

  110. A. Vleugels and E. Carmeliet, “Hypoxia increases potassium efflux from mammalian myocardium,” Experientia, 32, No. 4, 483–484 (1976).

    PubMed  CAS  Google Scholar 

  111. A. Vleugels, J. Vereecke, and E. Cramelet, “Ionic currents during hypoxia in voltage-clamped cat ventricular muscle,” Circ. Res., 47, No. 4, 501–508 (1980).

    PubMed  CAS  Google Scholar 

  112. J. Wang, Q. Gao, G. Q. Sun, et al., “Delta-opioid receptor mediates the cardioprotective effect of ischemic postconditioning,” Chin. J. Appl. Physiol., 24, No. 2, 184–189 (2008).

    Google Scholar 

  113. J. Wegrzyn, R. Potla, Y. J. Chwae, and N. B. Sepuri, “Function of mitochondrial Stat3 in cellular respiration,” Science, 323, No. 5915, 793–797 (2009).

    PubMed Central  PubMed  CAS  Google Scholar 

  114. C. Weinbrenner, G. S. Liu, J. M. Downey, and M. V. Cohen, “Cyclosporine A limits myocardial infarct size even when administered after onset of ischemia,” Cardiovasc. Res., 38, No. 3, 678–684 (1998).

    Google Scholar 

  115. M. Xu, Y. Wang, A. Ayub, and M. Ashraf, “Mitochondrial KATP channel activation reduces anoxic injury by restoring mitochondrial membrane potential,” Am. J. Physiol. Heart Circ. Physiol., 281, No. 3, H1295–H1303 (2001).

    PubMed  CAS  Google Scholar 

  116. W. Xu, Y. Liu, S. Wang, et al., “Cytoprotective role of Ca2+-activated K+ channels in the cardiac inner mitochondrial membrane,” Science, 298, No. 5595, 1029–1033 (2002).

    PubMed  CAS  Google Scholar 

  117. X. M. Yang, J. B. Proctor, L. Cui, et al., “Multiple-brief coronary occlusions during early reperfusion protect rabbit hearts by targeting cell signaling pathways,” J. Am. Coll. Cardiol., 44, No. 5, 1103–1110 (2004).

    PubMed  Google Scholar 

  118. Z. Yao and G. J. Gross, “Activation of ATP-sensitive potassium channels lowers threshold for ischemic preconditioning in dogs,” Am. J. Physiol., 267, No. 5, part 2, H1888–H1894 (1994).

  119. L. You, L. Li, Q. Xu, et al., “Postconditioning reduces infarct size and cardiac myocyte apoptosis via the opioid receptor and JAK-STAT signaling pathway,” Mol. Biol. Rep., 38, No. 1, 437–443 (2011).

    PubMed  CAS  Google Scholar 

  120. Z. Q. Zhao, J. S. Corvera, M. E. Halkos, et al., “Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning,” Am. J. Physiol. Heart Circ. Physiol., 285, No. 2, H579–H588 (2003).

    PubMed  CAS  Google Scholar 

  121. M. Zhu, J. Feng, E. Lucchinetti, et al., “Ischemic postconditioning protects remodeled myocardium via the PI3K-PKB/Akt reperfusion injury salvage kinase pathway,” Cardiovasc. Res., 72, No. 1, 152–162 (2006).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Maslov.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 99, No. 5, pp. 555–574, May, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maslov, L.N., Naryzhnaya, N.V., Hanush, L. et al. The Question of the End Effector of Ischemic Postconditioning of the Heart. Neurosci Behav Physi 45, 283–294 (2015). https://doi.org/10.1007/s11055-015-0069-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-015-0069-9

Keywords

Navigation