Skip to main content
Log in

A shift in microvillus membrane fucosylation to sialylation by ethanol ingestion in rat intestine

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The luminal surface of enterocytes is covered with glycocalyx which is rich in glycoproteins. Ethanol ingestion is shown to induce morphological and biochemical changes in the intestine. In this study, the effect of ethanol ingestion on membrane glycoproteins has been investigated. Chemical analysis of microvillus membranes revealed an increase in hexose and sialic acid contents, but a reduction in fucose levels in ethanol-fed rats compared with controls. The observed changes were apparent in animals fed with ethanol for 35–56 days compared with controls. Lectin-binding assay indicated an increase in Wheat germ agglutinin (affinity for GlcNAc/sialic acid) and a decrease in Aleuria aurantia (affinity for α-l-fucose) reactivity of brush borders in ethanol-fed animals for 4–8 weeks. Western blot analysis using biotin-labeled Wheat germ agglutinin revealed increased binding to proteins of Mr 66–205 kDa in ethanol-fed rats compared with controls. The binding of Aleuria aurantia to membrane proteins of Mr 97–185 kDa was reduced in ethanol-fed animals. These findings suggest that long-term ethanol feeding modulates the sialylation and fucosylation processes of microvillus membrane proteins in rat intestine. This could affect the intestinal digestive and absorptive functions in chronic alcoholism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Madara JL, Trier JS (1987) The functional morphology of the mucosa of small intestine. In: Johnson LR (ed) Physiology of the gastrointestinal tract, 3rd edn. Raven Press, New York, pp 1209–1249

    Google Scholar 

  2. Rindler MJ, Hoops TC (1994) Intracellular sorting in polarized epithelia. In: Johnson LR (ed) Physiology of the gastrointestinal tract, 3rd edn. Raven Press, New York, pp 1623–1645

    Google Scholar 

  3. Dai D, Nanthakumar NN, Newburg DS, Walker WA (2000) Role of oligosaccharides and glycoconjugates in intestinal host defense. J Pediatr Gastroenterol Nutr 30:S23–S33

    Article  CAS  PubMed  Google Scholar 

  4. Etzioni A (1996) Adhesion molecules—their role in health and disease. Pediatr Res 39:191–198. doi:10.1203/00006450-199602000-00001

    Article  CAS  PubMed  Google Scholar 

  5. Falk PG, Hooper LV, Midtvedt T, Gordon JI (1998) Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology. Microbiol Mol Biol Rev 62:1157–1170

    CAS  PubMed  Google Scholar 

  6. Hooper LV, Xu J, Falk PG, Midtvedt T, Gordon JI (1999) A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proc Natl Acad Sci USA 96:9833–9838. doi:10.1073/pnas.96.17.9833

    Article  CAS  PubMed  Google Scholar 

  7. Mukai T, Kaneko S, Ohori H (1998) Haemagglutination and glycolipids-binding activities of Lactobacillus Reuteri. Lett Appl Microbiol 27:130–134. doi:10.1046/j.1472-765X.1998.00418.x

    Article  CAS  PubMed  Google Scholar 

  8. Walker WA (2000) Role of nutrients and bacterial colonization in the development of intestinal host defense. J Pediatr Gastroenterol Nutr 30:S2–S7

    Article  PubMed  Google Scholar 

  9. Hooper LV, Bry L, Falk PG, Gordon JI (1998) Host-microbial symbiosis in small intestine. Exploring an internal ecosystem. Bioassays 20:336–343. doi:10.1002/(SICI)1521-1878(199804)20:4<336::AID-BIES10>3.0.CO;2-3

    Article  CAS  Google Scholar 

  10. Rolsma MD, Kuhlensschmdt TB, Gelberg HB, Kuhlenschmidt MS (1998) Structure and function of ganglioside receptor for porcine rotavirus. J Virol 72:9079–9091

    CAS  PubMed  Google Scholar 

  11. Bode C (2003) Effect of alcohol consumption on the gut. Best Pract Res Clin Gastroenterol 17:575–592. doi:10.1016/S1521-6918(03)00034-9

    Article  CAS  PubMed  Google Scholar 

  12. Kaur J, Jaswal VMS, Nagpaul JP, Mahmood A (1992) Chronic ethanol feeding and microvillus membrane glycosylation in control and protein malnourished rat intestine. Nutrition 8:338–342

    CAS  PubMed  Google Scholar 

  13. Kaur J, Gupta R, Kaur M, Nagpaul JP, Mahmood A (1994) Effect of chronic ethanol administration on intestinal microvillus membrane glycosylation in rats fed rat pellet diet and protein-rich diet. J Clin Biochem Nutr 16:133–142

    CAS  Google Scholar 

  14. Kaur J, Gupta R, Kaur M, Nagpaul JP, Mahmood A (1994) Effect of ethanol administration together with high- or low-protein diet on lipid composition of intestinal microvillus membrane in rats. J Clin Biochem Nutr 16:167–175

    CAS  Google Scholar 

  15. Bansal D, Sodhi CP, Mahmood S, Mahmood A (1998) Effect of chronic ethanol feeding on intestinal alkaline phosphatase activity in rats. Indian J Med Res 107:118–122

    CAS  PubMed  Google Scholar 

  16. Kaur J, Nagpaul JP, Mahmood A (1994) Expression of brush border enzymes in ethanol fed rat intestine. Indian J Med Res 100:289–294

    CAS  PubMed  Google Scholar 

  17. Kaur J, Jaswal VMS, Nagpaul JP, Mahmood A (1993) Effect of chronic ethanol administration on the absorptive functions of the rat small intestine. Alcohol 10:299–302. doi:10.1016/0741-8329(93)90009-D

    Article  CAS  PubMed  Google Scholar 

  18. Kaur J, Kaur M, Nagpaul JP, Mahmood A (1995) Dietary protein regimens and chronic ethanol administration effects on sodium- and proton-dependent solute uptake in rat intestine. Alcohol 12:459–462. doi:10.1016/0741-8329(95)00031-L

    Article  CAS  PubMed  Google Scholar 

  19. Kaur J, Nagpaul JP, Singh K, Mahmood A (1995) Effect of chronic ethanol administration and dietary protein regimens on intestinal absorption of macromolecules in rats. Ann Nutr Metab 39:152–158. doi:10.1159/000177856

    Article  CAS  PubMed  Google Scholar 

  20. Kessler M, Acto O, Storelli C, Murer H, Muller M, Semenza G (1978) A modified procedure for the rapid preparation of efficiently transporting vesicle from intestinal brush border membrane. Their use in investigating some properties of D-glucose and choline transport systems. Biochim Biophys Acta 506:136–154. doi:10.1016/0005-2736(78)90440-6

    Article  CAS  PubMed  Google Scholar 

  21. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin-phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  22. Roe JH (1955) The determination of sugar in blood and spinal fluid with anthrone reagent. J Biol Chem 212:335–340

    CAS  PubMed  Google Scholar 

  23. Dische Z, Shettles LB (1948) A specific color reaction of methylpentoses and a spectrophotometric micro method for their determination. J Biol Chem 175:595–603

    CAS  PubMed  Google Scholar 

  24. Skoza M, Mohos S (1976) Stable thiobarbituric acid chromophore with diethylsulphoxide. Application to sialic acid assay in analytical de-O-acetylation. Biochem J 159:475–482

    Google Scholar 

  25. Hendriks HGCJM, Koninkx JFJG, Draaijer M, van Kijk JI, Raaijmakers JAM, Mouwen JMVM (1992) Quantitative determination of the lectin binding capacity of small intestinal brush-border membrane. An enzyme linked lectin sorbent assay (ELISA). Biochim Biophys Acta 905:371–375

    Google Scholar 

  26. Towbin H, Staehelin T, Gordan J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets, procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354. doi:10.1073/pnas.76.9.4350

    Article  CAS  PubMed  Google Scholar 

  27. Torres-Pinedo MA (1984) Postnatal changes in biosynthesis of microvillar membrane glycans of rat small intestine. Evidence of a developmental shift from terminal sialyation to fucosylation. Biochem Biophys Res Commun 125:546–553. doi:10.1016/0006-291X(84)90574-6

    Article  CAS  PubMed  Google Scholar 

  28. Persson J (1991) Alcohol and small intestine. Scand J Gastroenterol 26:3–15. doi:10.3109/00365529108996478

    Article  CAS  PubMed  Google Scholar 

  29. Mathew J, Klemm WR (1989) Differences in susceptibility of rat liver and brain sialidases to ethanol and gangliosides. Pharmacol Biochem Behav 33:797–803. doi:10.1016/0091-3057(89)90473-5

    Article  CAS  PubMed  Google Scholar 

  30. Stibler H, Borg S (1982) Reduction of the sialic acid and galactose concentration in erythrocyte membrane in alcoholics. Drug Alcohol Depend 10:85–98. doi:10.1016/0376-8716(82)90089-8

    Article  CAS  PubMed  Google Scholar 

  31. Malagolini N, Dall’Olio F, Serafini-Cessi F, Cessi C (1989) Effect of acute and chronic ethanol administration on rat liver 2,6-sialyltransferase activity responsible for sialylation of serum transferring. Alcohol Clin Exp Res 13:649–653. doi:10.1111/j.1530-0277.1989.tb00398.x

    Article  CAS  PubMed  Google Scholar 

  32. Nanthakumar NN, Dai D, Newburg DS, Walker WA (2003) The role of indigenous microflora in the development of murine intestinal fucosyl- and sialyltransferases. J FASEB 17:44–46

    CAS  Google Scholar 

  33. Kaur K, Mahmood S, Mahmood A (2006) Susceptibility of lactase to luminal proteases in developing rat intestine. Indian J Gastroenterol 25:179–181

    PubMed  Google Scholar 

  34. Vaquera J, Vaquera A, Girbes T (2002) Effects of chronic administration of either ethanol or pentanol on rat duodenum morphology. Histol Histopathol 17:199–203

    CAS  PubMed  Google Scholar 

  35. Mitchell PA, Miller TA, Schmidt KL (1990) Effects of alcohol on lectin binding affinity in rat gastric mucosa. Dig Dis Sci 35:865–872. doi:10.1007/BF01536800

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We gratefully acknowledge the financial assistance from Council for Scientific and Industrial Research (CSIR), New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhtar Mahmood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grewal, R.K., Mahmood, A. A shift in microvillus membrane fucosylation to sialylation by ethanol ingestion in rat intestine. Mol Cell Biochem 331, 19–25 (2009). https://doi.org/10.1007/s11010-009-0140-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0140-3

Keywords

Navigation