Skip to main content
Log in

Urinary bladder membrane permeability differentially induced by membrane lipid composition

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The permeability barrier of the urothelium (covering the mammalian urinary tract) has stimulated interest in the role of the luminal membrane in the barrier function. To know how membrane lipids may affect the permeability barrier we prepare endocytic vesicles of different lipid composition entrapping a fluorescent dye (HPTS) and its quencher (DPX) using a dietary strategy (rats fed with commercial, oleic acid- or linoleic acid-enriched diets) followed by endocytosis induction. Vesicular leakage was measured by a fluorescence requenching technique. The results showed (1) endocytosed vesicles can release their content; (2) a linoleic acid-rich diet did not change either the mechanism of leakage or the amount of released material relative to the control; and (3) a oleic acid-rich diet greatly affected the mechanism of release. Thus, the dietary fatty acids can modify the urothelial cell physiology altering the pathway of endocytosed urinary fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kachar B, Liang F, Lins U, Ding M, Wu X-R, Stoffer D, Aebi U, Sun TT (1999) Three-dimensional analysis of the 16 nm urothelial plaque particle: luminal surface exposure, preferential head-to head interaction, and hinge formation. J Mol Biol 285:595–608. doi:10.1006/jmbi.1998.2304

    Article  CAS  PubMed  Google Scholar 

  2. Hainau B (1979) Luminal plasma membrane organization in rat urinary bladder urothelium after direct exposure in vivo to N-methyl-N-Nitosourea. Cancer Res 39:3757–3762

    CAS  PubMed  Google Scholar 

  3. Hu P, Deng FM, Lian FX, Hu CM, Auerbach A, Shapiro E, Wu XR, Kachlar B, Sun TT (2000) Ablation of uroplakin III gene result in small urothelial plaques urothelial leakage and vesicoureteral reflux. J Cell Biol 151:961–971. doi:10.1083/jcb.151.5.961

    Article  CAS  PubMed  Google Scholar 

  4. Truschel ST, Wang E, Ruiz WG, Leung SM, Rojas R, Lavelle J, Zeide M, Stoffer D, Apodaca G (2002) Stretch-regulated exocytosis/endocytosis in bladder umbrella cells. Mol Biol Cell 13:830–846. doi:10.1091/mbc.01-09-0435

    Article  CAS  PubMed  Google Scholar 

  5. Clemow D, Steers W, Tuttle J (2000) Stretch-regulated signalling of nerve growth factor secretion in bladder and vascular smooth muscle cells from hypertensive, and hyperactive rats. J Cell Physiol 183:289–300. doi:10.1002/(SICI)1097-4652(200006)183:3<289::AID-JCP1>3.0.CO;2-6

    Article  CAS  PubMed  Google Scholar 

  6. Lewis S, de Moura J (1984) Apical membrane area of rabbit urinary bladder increases by fusion of intracellular vesicle: an electrophysiological studies. J Membr Biol 82:123–136. doi:10.1007/BF01868937

    Article  CAS  PubMed  Google Scholar 

  7. Wasungu L, Stuart MCA, Scarzello M, Engberts JBFN, Hoekstra D (2006) Lipoplexes formed from sugar-based Gemini surfactants undergo a lamellar-to-micellar phase transition at acidic pH. Evidence for a non-inverted membrane-destabilizing hexagonal phase of lipoplexes. Biochim Biophys Acta 1758:1677–1684. doi:10.1016/j.bbamem.2006.06.019

    Article  CAS  PubMed  Google Scholar 

  8. Calderón RO, Glocker M, Eynard AR (1998) Lipid and fatty acid composition of different fractions from rats urinary transitional epithelium. Lipids 33:1017–1022. doi:10.1007/s11745-998-0300-0

    Article  PubMed  Google Scholar 

  9. Calderón RO, Eynard AR (2000) Fatty acids specifically related to the anisotropic properties of plasma membranes from rat urothelium. Biochim Biophys Acta 1483:174–184

    PubMed  Google Scholar 

  10. Bongiovanni GA, Eynard AR, Calderón RO (2005) Altered lipid profile and changes in uroplakin properties of rat urothelial plasma membrane with diets of different lipid composition. Mol Cell Biochem 271:69–75. doi:10.1007/s11010-005-4505-y

    Article  CAS  PubMed  Google Scholar 

  11. Calderón RO, Grasso EJ (2006) Symmetric array of the urothelium surface controlled by the lipid lattice composition. Biochem Biophys Res Commun 339:642–646. doi:10.1016/j.bbrc.2005.11.061

    Article  PubMed  Google Scholar 

  12. Cremonezzi DC, Diaz MP, Valentich MA, Eynard AR (2004) Neoplastic and preneoplastic lesions induced by melamine in rat urothelium are modulated by dietary polyunsaturated fatty acids. Food Chem Toxicol 42:1999–2007. doi:10.1016/j.fct.2004.06.020

    Article  CAS  PubMed  Google Scholar 

  13. Eynard AR, Manzur T, Moyano A, Quiroga P, Muñoz SE, Silva RA (1997) Dietary deficiency or enrichment of essential fatty acids modulate tumorigenesis in the whole body of cobalt-60 irradiated mice. Prostaglandins Leukot Essent Fatty Acids 56:239–244. doi:10.1016/S0952-3278(97)90542-1

    Article  CAS  PubMed  Google Scholar 

  14. Ladokhin AS, Wimley WC, Withe SH (1995) Leakage of membrane vesicle contents: determination of mechanism using fluorescence requenching. Biophys J 69:1964–1971. doi:10.1016/S0006-3495(95)80066-4

    Article  CAS  PubMed  Google Scholar 

  15. Ladokhin AS, Selsted ME, White SH (1997) Bilayer interactions of indolicidin, a small antimicrobial peptide rich in tryptophane, proline, and basic amino acids. Biophys J 72:794–805. doi:10.1016/S0006-3495(97)78713-7

    Article  CAS  PubMed  Google Scholar 

  16. Chang A, Hammond TG, Sun ST, Zeidel ML (1994) Permeability properties of the mammalian bladder apical membrane. Am J Physiol Cell Physiol 36:C1483–C1492

    Google Scholar 

  17. Wimley WC, Selsted ME, White SH (1994) Interactions between human defensins and lipid bilayers: evidence for formation of multimeric pores. Protein Sci 3:1362–1373. doi:10.1002/pro.5560030902

    Article  CAS  PubMed  Google Scholar 

  18. Lakowicz JR (1983) Quenching of fluorescence. In: Lakowicz JR (ed) Principles of fluorescence spectroscopy, 1st edn. Plenum Press, New York, pp 258–297

    Google Scholar 

  19. Lewis SA (2000) Everything you wanted to know about the bladder epithelium but were afraid to ask. Am J Physiol Renal Physiol 278:F867–F874

    CAS  PubMed  Google Scholar 

  20. Wu XR, Medina JJ, Sun TT (1995) Selective interactions of UPIa and UPIb, two members of the transmembrane 4 superfamily, with distinct single transmembrane-domained proteins in differentiated urothelial cells. J Biol Chem 270:29752–29759. doi:10.1074/jbc.270.50.29752

    Article  CAS  PubMed  Google Scholar 

  21. Min G, Schapira M, Sun TT, Kong XP (2003) Structural bass of urothelial permeability barrier function as revealed by Cryo-EM studies of the 16 nm uroplakin particle. J Cell Sci 116:4087–4094. doi:10.1242/jcs.00811

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from SECYT-UNC and CONICET, Argentina. We are grateful to María Laura Nores for her helpful criticism during the realization of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reyna Olga Calderón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grasso, E.J., Calderón, R.O. Urinary bladder membrane permeability differentially induced by membrane lipid composition. Mol Cell Biochem 330, 163–169 (2009). https://doi.org/10.1007/s11010-009-0129-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0129-y

Keywords

Navigation