Skip to main content
Log in

Role of healing-specific-matricellular proteins and matrix metalloproteinases in age-related enhanced early remodeling after reperfused STEMI in dogs

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

We assessed whether aging augments left ventricular (LV) damage, remodeling, and dysfunction and alters expression of healing-specific-matricellular proteins (HSMPs), matrix metalloproteinases (MMPs) and other pertinent proteins after acute reperfused-ST-segment-elevation myocardial infarction (RSTEMI) in the dog model. The findings suggest a novel role for HSMPs, MMPs, and the other proteins in the age-related increase in LV damage, remodeling, and dysfunction. Potentially detrimental effects of the altered proteins appear to outweigh beneficial effects and contribute to adverse outcome. Deleterious changes include the increase in matrix-degrading MMPs, inducible nitric oxide synthase (iNOS) and pro-inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α, HSMPs such as secreted-protein-acidic-and-rich-in-cysteine (SPARC) and osteopontin (OPN), the blunted increase in endothelial-NOS (eNOS), and the decrease in IL-10 and neuronal NOS (nNOS). Potentially beneficial changes include increases in the HSMP secretory-leucocyte-protease-inhibitor (SLPI) and cytokine transforming growth factor (TGF)-β1. Targeting these proteins may mitigate enhanced LV remodeling and dysfunction with aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Reimer KA, Jennings RB (1979) The “wavefront phenomenon” of myocardial ischemic cell death. II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab Invest 40:633–644

    PubMed  CAS  Google Scholar 

  2. Rogers WJ, Bowlby LJ, Chandra NC et al (1994) Treatment of myocardial infarction in the United States (1990 to 1993). Observations from the national registry of myocardial infarction. Circulation 90:2103–2114

    PubMed  CAS  Google Scholar 

  3. Antman EM, Hand M, Armstrong PW et al (2008) Focused update of the ACC/AHA 2004 guidelines for the management of patients with ST-elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines: 2007 writing group to review new evidence and update the ACC/AHA 2004 guidelines for the management of patients with ST-elevation myocardial infarction, writing on behalf of the 2004 writing committee. Circulation 117:296–329. doi:10.1161/CIRCULATIONAHA.107.188209

    Article  PubMed  Google Scholar 

  4. Bolli R (1990) Mechanism of myocardial “stunning”. Circulation 82:723–738

    PubMed  CAS  Google Scholar 

  5. Jugdutt BI (2003) Ventricular remodeling post-infarction and the extracellular collagen matrix. When is enough enough? Circulation 108:1395–1403. doi:10.1161/01.CIR.0000085658.98621.49

    Article  PubMed  Google Scholar 

  6. Jugdutt BI (2006) Matrix metalloproteinases as markers of adverse remodeling after myocardial infarction. J Card Fail 2:73–76. doi:10.1016/j.cardfail.2005.10.001

    Article  CAS  Google Scholar 

  7. Jugdutt BI, Idikio H, Uwiera R (2007) Angiotensin receptor blockade and ACE inhibition limit adverse collagen remodeling in infarct zone and global diastolic dysfunction during healing after reperfused ST-elevation myocardial infarction. Mol Cell Biochem 303:27–38. doi:10.1007/s11010-007-9452-3

    Article  PubMed  CAS  Google Scholar 

  8. Matsumura K, Jeremy RW, Schaper J et al (1998) Progression of myocardial necrosis during reperfusion of ischemic myocardium. Circulation 97:795–804

    PubMed  CAS  Google Scholar 

  9. Reffelmann T, Hale SL, Dow JS et al (2003) No-reflow phenomenon persists long-term after ischemia/reperfusion in the rat and predicts infarct expansion. Circulation 108:2911–2917. doi:10.1161/01.CIR.0000101917.80668.E1

    Article  PubMed  Google Scholar 

  10. Lalu MM, Pasini E, Schultze CJ et al (2005) Ischaemia-reperfusion injury activates matrix metalloproteinases in the human heart. Eur Heart J 26:27–35. doi:10.1093/eurheartj/ehi007

    Article  PubMed  CAS  Google Scholar 

  11. Okamuto T, Akaike T, Sawa T et al (2001) Activation of matrix metalloproteinases by peroxynitrite-induced protein S-glutathiolation via disulfide S-oxide formation. J Biol Chem 276:29596–29602. doi:10.1074/jbc.M102417200

    Article  Google Scholar 

  12. Wang W, Sawicki G, Schulz R (2002) Peroxynitrite-induced myocardial injury is mediated through matrix metalloproteinase-2. Cardiovasc Res 53:165–174. doi:10.1016/S0008-6363(01)00445-X

    Article  PubMed  CAS  Google Scholar 

  13. Bolognese L, Neskovic AN, Parodi G et al (2002) Left ventricular remodeling after primary coronary angioplasty: patterns of left ventricular dilation and long-term prognostic implications. Circulation 106:2351–2357. doi:10.1161/01.CIR.0000036014.90197.FA

    Article  PubMed  Google Scholar 

  14. Bueno H, Martínez-Sellés M, Pérez-David E et al (2005) Effect of thrombolytic therapy on the risk of cardiac rupture and mortality in older patients with first acute myocardial infarction. Eur Heart J 26:1705–1711. doi:10.1093/eurheartj/ehi284

    Article  PubMed  CAS  Google Scholar 

  15. Maggioni AP, Maseri A, Fresco C et al (1993) Age-related increase in mortality among patients with first myocardial infarctions treated with thrombolysis. The investigators of the gruppo Italiano per lo Studio della supravvivenza nell’Infarcto Miocardico (GISSI-2). N Engl J Med 329:1442–1448. doi:10.1056/NEJM199311113292002

    Article  PubMed  CAS  Google Scholar 

  16. St John Sutton M, Pfeffer MA, Moye L et al (1997) Cardiovascular death and left ventricular remodeling two years after myocardial infarction: baseline predictors and impact of long-term use of captopril: information from the Survival and Ventricular Enlargement (SAVE) trial. Circulation 96:3294–3299

    PubMed  CAS  Google Scholar 

  17. Jugdutt BI (2008) Aging and remodeling during healing of the wounded heart: current therapies and novel drug targets. Curr Drug Targets 9:325–344. doi:10.2174/138945008783954934

    Article  PubMed  CAS  Google Scholar 

  18. Alexander KP, Newby LK, Armstrong PW, American Heart Association Council on Clinical Cardiology Society of Geriatric Cardiology et al (2007) Acute coronary care in the elderly, part II. ST-segment-elevation myocardial infarction. A scientific statement for healthcare professionals from the American Heart Association Council for Clinical Cardiology. Circulation 115:2570–2589. doi:10.1161/CIRCULATIONAHA.107.182616

    Article  PubMed  Google Scholar 

  19. Bujak M, Kweon HJ, Chatila K et al (2008) Aging-related defects are associated with adverse cardiac remodeling in a mouse model of reperfused myocardial infarction. J Am Coll Cardiol 51:1384–1392. doi:10.1016/j.jacc.2008.01.011

    Article  PubMed  Google Scholar 

  20. Ertl G, Frantz S (2005) Healing after myocardial infarction. Cardiovasc Res 66:22–32. doi:10.1016/j.cardiores.2005.01.011

    Article  PubMed  CAS  Google Scholar 

  21. Frangogiannis NG, Smith CW, Entman ML (2002) The inflammatory response in myocardial infarction. Cardiovasc Res 3:31–47. doi:10.1016/S0008-6363(01)00434-5

    Article  Google Scholar 

  22. Jugdutt BI (2003) Remodeling of the myocardium and potential targets in the collagen degradation and synthesis pathways. Curr Drug Targets Cardiovasc Haematol Disord 3:1–30. doi:10.2174/1568006033337276

    Article  PubMed  CAS  Google Scholar 

  23. Sawicki G, Menon V, Jugdutt BI (2004) Improved balance between TIMP-3 and MMP-9 after regional myocardial ischemia-reperfusion during AT1 receptor blockade. J Card Fail 10:442–449. doi:10.1016/j.cardfail.2004.01.012

    Article  PubMed  CAS  Google Scholar 

  24. Jugdutt BI (1990) Identification of patients prone to infarct expansion by the degree of regional shape distortion on an early two-dimensional echocardiogram after myocardial infarction. Clin Cardiol 13:28–40

    Article  PubMed  CAS  Google Scholar 

  25. Wang W, Schulze CJ, Suarez-Pinzon WL et al (2002) Intracellular action of matrix metalloproteinase-2 accounts for acute myocardial ischemia and reperfusion injury. Circulation 106:1543–1549. doi:10.1161/01.CIR.0000028818.33488.7B

    Article  PubMed  CAS  Google Scholar 

  26. Li YY, Feldman AM, Sun Y et al (1998) Differential expression of tissue inhibitors of metalloproteinases in the failing human heart. Circulation 98:1728–1734

    PubMed  CAS  Google Scholar 

  27. Deten A, Hölzl A, Leicht M et al (2001) Changes in extracellular matrix and in transforming growth factor beta isoforms after coronary artery ligation in rats. J Mol Cell Cardiol 33:1191–1207. doi:10.1006/jmcc.2001.1383

    Article  PubMed  CAS  Google Scholar 

  28. Masson S, Arosio B, Luvarà G et al (1998) Remodelling of cardiac extracellular matrix during β-adrenergic stimulation: upregulation of SPARC in the myocardium of adult rats. J Mol Cell Cardiol 30:1501–1514. doi:10.1006/jmcc.1998.0714

    Article  Google Scholar 

  29. Ries C, Petrides PE (1995) Cytokine regulation of matrix metalloproteinase activity and its regulatory dysfunction in disease. Biol Chem Hoppe Seyler 376:345–355

    PubMed  CAS  Google Scholar 

  30. Irwin MW, Mak S, Mann DL et al (1999) Tissue expression and immunolocalization of tumor necrosis factor-alpha in postinfarction dysfunctional myocardium. Circulation 99:1492–1498

    PubMed  CAS  Google Scholar 

  31. Jugdutt BI (2002) Nitric oxide and cardioprotection during ischemia-reperfusion. Heart Fail Rev 7:391–405. doi:10.1023/A:1020718619155

    Article  PubMed  CAS  Google Scholar 

  32. Ashcroft GS, Lei K, Jin W et al (2000) Secretory leukocyte protease inhibitor mediates non-redundant functions necessary for normal wound healing. Nat Med 6:1147–1153. doi:10.1038/80489

    Article  PubMed  CAS  Google Scholar 

  33. Sano C, Shimizu T, Sato K et al (2000) Effects of secretory leukocyte protease inhibitor on the production of the anti-inflammatory cytokines, IL-10 and transforming growth factor-beta (TGF-β), by lipopolysaccharide-stimulated macrophages. Clin Exp Immunol 121:77–85. doi:10.1046/j.1365-2249.2000.01269.x

    Article  PubMed  CAS  Google Scholar 

  34. Zhang Y, DeWitt DL, McNeely TB et al (1997) Secretory leukocyte protease inhibitor suppresses the production of monocyte prostaglandin H synthase-2, prostaglandin E2, and matrix metalloproteinases. J Clin Invest 99:894–900. doi:10.1172/JCI119254

    Article  PubMed  CAS  Google Scholar 

  35. Lane TF, Sage EH (1994) The biology of SPARC, a protein that modulates cell-matrix interactions. FASEB J 8:163–173

    PubMed  CAS  Google Scholar 

  36. Wu RX, Laser M, Han H et al (2006) Fibroblast migration after myocardial infarction is regulated by transient SPARC expression. J Mol Med 84:241–252. doi:10.1007/s00109-005-0026-0

    Article  PubMed  CAS  Google Scholar 

  37. Denhardt DT, Guo X (1993) Osteopontin: a protein with diverse functions. FASEB J 7:1475–1482

    PubMed  CAS  Google Scholar 

  38. Singh K, Sirokman G, Communal C et al (1999) Myocardial osteopontin expression coincides with the development of heart failure. Hypertension 33:663–670

    PubMed  CAS  Google Scholar 

  39. Trueblood NA, Xie Z, Communal C et al (2001) Exaggerated left ventricular dilation and reduced collagen deposition after myocardial infarction in mice lacking osteopontin. Circ Res 88:1080–1087. doi:10.1161/hh1001.090842

    Article  PubMed  CAS  Google Scholar 

  40. Sawicki G, Jugdutt BI (2004) Detection of changes in protein levels in the in vivo canine model of acute heart failure following ischemia-reperfusion injury. Proteomics 4:2195–2202. doi:10.1002/pmic.200300746

    Article  PubMed  CAS  Google Scholar 

  41. Sawicki G, Jugdutt BI (2007) Valsartan reverses post-translational modifications of the δ-subunit of ATP synthase during in vivo canine reperfused myocardial infarction. Proteomics 7:2100–2110. doi:10.1002/pmic.200601022

    Article  PubMed  CAS  Google Scholar 

  42. Jugdutt BI, Becker LC, Hutchins GM (1979) Early changes in collateral blood flow during myocardial infarction in conscious dogs. Am J Physiol 237:H371–H380

    PubMed  CAS  Google Scholar 

  43. Jugdutt BI, Idikio HA (2005) Apoptosis and oncosis in acute coronary syndromes: assessment and implications. Mol Cell Biochem 270:177–200. doi:10.1007/s11010-005-4507-9

    Article  PubMed  CAS  Google Scholar 

  44. Lester SJ, Tajik AJ, Nishimura RA et al (2008) Unlocking the mysteries of diastolic function. Deciphering the Rosetta stone 10 years later. J Am Coll Cardiol 51:679–689. doi:10.1016/j.jacc.2007.09.061

    Article  PubMed  Google Scholar 

  45. Stanton LW, Garrard LJ, Damm D et al (2000) Altered patterns of gene expression in response to myocardial infarction. Circ Res 86:939–945

    PubMed  CAS  Google Scholar 

  46. Singh K, Balligand JL, Fischer TA et al (1995) Glucocorticoids increase osteopontin expression in cardiac myocytes and microvascular endothelial cells. Role in regulation of inducible nitric oxide synthase. J Biol Chem 270:28471–28478. doi:10.1074/jbc.270.25.14867

    Article  PubMed  CAS  Google Scholar 

  47. Komatsubara I, Murakami T, Kusachi S et al (2003) Spatially and temporally different expression of osteonectin and osteopontin in the infarct zone of experimentally induced myocardial infarction in rats. Cardiovasc Pathol 12:186–194. doi:10.1016/S1054-8807(03)00042-5

    Article  PubMed  CAS  Google Scholar 

  48. Khan SA, Skaf MW, Harrison RW et al (2003) Nitric oxide regulation of myocardial contractility and calcium cycling. Independent impact of neuronal and endothelial nitric oxide synthases. Circ Res 92:1322–1329. doi:10.1161/01.RES.0000078171.52542.9E

    Article  PubMed  CAS  Google Scholar 

  49. Nian M, Lee P, Khaper N et al (2004) Inflammatory cytokines and postmyocardial infarction remodeling. Circ Res 94:1543–1553. doi:10.1161/01.RES.0000130526.20854.fa

    Article  PubMed  CAS  Google Scholar 

  50. Dewald O, Ren G, Duerr GD et al (2004) Of mice and dogs: species specific differences in the inflammatory response following myocardial infarction. Am J Pathol 164:665–677

    PubMed  CAS  Google Scholar 

  51. Jugdutt BI, Jelani A (2008) Aging and defective healing, adverse remodeling and blunted postconditioning in the wounded heart with aging. J Am Coll Cardiol 51:1399–1403. doi:10.1016/j.jacc.2007.12.027

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the Canadian Institutes of Health Research (CIHR) and Heart and Stroke Foundation of Canada (HSFC), Ottawa, Ontario. We thank C. Jugdutt for her assistance with manuscript preparation, and Mr. Vijayan Menon for his support with computer.

Disclosure

Grants from CIHR and HSFC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bodh I. Jugdutt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jugdutt, B.I., Palaniyappan, A., Uwiera, R.R.E. et al. Role of healing-specific-matricellular proteins and matrix metalloproteinases in age-related enhanced early remodeling after reperfused STEMI in dogs. Mol Cell Biochem 322, 25–36 (2009). https://doi.org/10.1007/s11010-008-9936-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9936-9

Keywords

Navigation