Skip to main content
Log in

Hypoxic remodelling of Ca2+ signalling in proliferating human arterial smooth muscle

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Ca2+ homeostasis in proliferating smooth muscle (SM) cells strongly influences neointima formation, which can cause failure of coronary artery bypass surgery. During surgical procedures and subsequent revascularization, SM cells are also exposed to a period of hypoxia. Problems with bypass surgery in general involve neointima formation which is in turn dependent on SM proliferation and migration. Here, we have directly monitored [Ca2+]i fluorimetrically in proliferating internal mammary artery (IMA) SM cells, and investigated how this is modulated by chronic hypoxia (CH; 24 h, 2.5% O2). IMA is the most successful replacement conduit vessel in bypass grafts. Basal [Ca2+]i was unaffected by CH, but removal of extracellular Ca2+ evoked far smaller reductions in [Ca2+]i than were seen in normoxic cells. Voltage-gated Ca2+ entry was suppressed in CH cells, and this was attributable to activation of the transcriptional regulator, hypoxia inducible factor. Furthermore, the relative contributions to voltage-gated Ca2+ entry of L- and T-type Ca2+ channels was markedly altered, with T-type channels becoming functionally more important in CH cells. Agonist-evoked mobilization of Ca2+ from intracellular stores was not affected by CH, whilst subsequent capacitative Ca2+ entry was modestly suppressed. Our data provide novel observations of the remodelling of Ca2+ homeostasis by CH in IMASM cells which may contribute to their superior patency as coronary bypass grafts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nwasokwa ON (1995) Coronary artery bypass graft disease. Ann Intern Med 123:528–545

    PubMed  CAS  Google Scholar 

  2. Lapidot SA, Phair RD (1995) Platelet-derived growth factor causes sustained depletion of both inositol trisphosphate-sensitive and caffeine-sensitive intracellular calcium stores in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 15:44–51

    PubMed  CAS  Google Scholar 

  3. Short AD, Bian J, Ghosh TK et al (1993) Intracellular Ca2+ pool content is linked to control of cell growth. Proc Natl Acad Sci USA 90:4986–4990. doi:10.1073/pnas.90.11.4986

    Article  PubMed  CAS  Google Scholar 

  4. Peeper DS, Bernards R (1997) Communication between the extracellular environment, cytoplasmic signalling cascades and the nuclear cell-cycle machinery. FEBS Lett 410:11–16. doi:10.1016/S0014-5793(97)00319-0

    Article  PubMed  CAS  Google Scholar 

  5. Hardingham GE, Chawala S, Johnson CM et al (1997) Distinct functions of nuclear and cytoplasmic calcium in the control of gene expression. Nature 385:260–265. doi:10.1038/385260a0

    Article  PubMed  CAS  Google Scholar 

  6. George SJ, Johnson JL, Angelini GD et al (1997) Short-term exposure to thapsigargin inhibits neointima formation in human saphenous vein. Arterioscler Thromb Vasc Biol 17:2500–2506

    PubMed  CAS  Google Scholar 

  7. George SJ, Birkett S, Jeremy JY et al (1997) Depletion of intracellular calcium pools with thapsigargin inhibits the migration of A7r5 cells, in vitro. Br J Pharmacol 122(Suppl):6

    Google Scholar 

  8. Golovina VA (1999) Cell proliferation is associated with enhanced capacitative Ca2+ entry in human arterial myocytes. Am J Physiol 277:C343–C349

    PubMed  CAS  Google Scholar 

  9. Albert AP, Large WA (2003) Store-operated Ca2+-permeable non-selective cation channels in smooth muscle cells. Cell Calcium 33:345–356. doi:10.1016/S0143-4160(03)00048-4

    Article  PubMed  CAS  Google Scholar 

  10. Moudgil R, Michelakis ED, Archer SL (2006) The role of K+ channels in determining pulmonary vascular tone, oxygen sensing, cell proliferation, and apoptosis: implications in hypoxic pulmonary vasoconstriction and pulmonary arterial hypertension. Microcirculation 13:615–632. doi:10.1080/10739680600930222

    Article  PubMed  CAS  Google Scholar 

  11. Crawford DW, Blankenhorn DH (1991) Arterial wall oxygenation, oxyradicals, and atherosclerosis. Atherosclerosis 89:97–108. doi:10.1016/0021-9150(91)90049-9

    Article  PubMed  CAS  Google Scholar 

  12. Martin JF, Booth RF, Moncada S (1991) Arterial wall hypoxia following thrombosis of the vasa vasorum is an initial lesion in atherosclerosis. Eur J Clin Invest 21:355–359. doi:10.1111/j.1365-2362.1991.tb01382.x

    Article  PubMed  CAS  Google Scholar 

  13. Auer G, Ward ME (1998) Impaired reactivity of rat aorta to phenylephrine and KCl after prolonged hypoxia: role of the endothelium. J Appl Physiol 85:411–417

    PubMed  CAS  Google Scholar 

  14. Doyle MP, Walker BR (1991) Attentuation of systemic vasoreactivity in chronically hypoxic rats. Am J Physiol 260:R1114–R1122

    PubMed  CAS  Google Scholar 

  15. Hu XQ, Longo LD, Gilbert RD et al (1996) Effects of long-term high-altitude hypoxemia on alpha 1-adrenergic receptors in the ovine uterine artery. Am J Physiol 270:H1001–H1007

    PubMed  CAS  Google Scholar 

  16. Ueno N, Zhao Y, Zhang L et al (1997) High altitude-induced changes in alpha1-adrenergic receptors and Ins(1, 4, 5)P3 responses in cerebral arteries. Am J Physiol 272:R669–R674

    PubMed  CAS  Google Scholar 

  17. Zhang L, Xiao D (1998) Effects of chronic hypoxia on Ca2+ mobilization and Ca2+ sensitivity of myofilaments in uterine arteries. Am J Physiol 274:H132–H138

    PubMed  CAS  Google Scholar 

  18. Cooper AL, Beasley D (1999) Hypoxia stimulates proliferation and interleukin-1 alpha production in human vascular smooth muscle cells. Am J Physiol 277:H1326–H1337

    PubMed  CAS  Google Scholar 

  19. Patel MK, Clunn GF, Lymn JS et al (2005) Effects of serum withdrawal on the contribution of L-type calcium channels (CaV1.2) to intracellular Ca2+ responses and chemotaxis in cultured human vascular smooth muscle cells. Br J Pharmacol 145:811–817. doi:10.1038/sj.bjp.0706237

    Article  PubMed  CAS  Google Scholar 

  20. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. doi:10.1016/0022-1759(83)90303-4

    Article  PubMed  CAS  Google Scholar 

  21. Zhong H, Simons JW (1999) Direct comparison of GAPDH, beta-actin, cyclophilin, and 28S rRNA as internal standards for quantifying RNA levels under hypoxia. Biochem Biophys Res Commun 259:523–526. doi:10.1006/bbrc.1999.0815

    Article  PubMed  CAS  Google Scholar 

  22. Fantozzi I, Zhang S, Platoshyn O et al (2003) Hypoxia increases AP-1 binding activity by enhancing capacitative Ca2+ entry in human pulmonary artery endothelial cells. Am J Physiol 285:L1233–L1245

    CAS  Google Scholar 

  23. Franco-Obregon A, Urena J, Lopez-Barneo J (1995) Oxygen-sensitive calcium channels in vascular smooth muscle and their possible role in hypoxic arterial relaxation. Proc Natl Acad Sci USA 92:4715–4719. doi:10.1073/pnas.92.10.4715

    Article  PubMed  CAS  Google Scholar 

  24. Franco-Obregon A, Lopez-Barneo J (1996) Differential oxygen sensitivity of calcium channels in rabbit smooth muscle cells of conduit and resistance pulmonary arteries. J Physiol 491:511–518

    PubMed  CAS  Google Scholar 

  25. Zemplenyi T, Crawford DW, Cole MA (1989) Adaptation to arterial wall hypoxia demonstrated in vivo with oxygen microcathodes. Atherosclerosis 76:173–179. doi:10.1016/0021-9150(89)90101-9

    Article  PubMed  CAS  Google Scholar 

  26. Quingard JF, Harricane MC, Menard C et al (2001) Transient down-regulation of L-type Ca2+ channel and dystrophin expression after balloon injury in rat aortic cells. Cardiovasc Res 49:177–188. doi:10.1016/S0008-6363(00)00210-8

    Article  Google Scholar 

  27. Panner A, Cribbs LL, Zainelli GM et al (2005) Variation of T-type calcium channel protein expression affects cell division of cultured tumor cells. Cell Calcium 37:105–119. doi:10.1016/j.ceca.2004.07.002

    Article  PubMed  CAS  Google Scholar 

  28. Kuga T, Kobayashi S, Hirakawa Y et al (1996) Cell cycle-dependent expression of L- and T-type Ca2+ currents in rat aortic smooth muscle cells in primary culture. Circ Res 79:14–19

    PubMed  CAS  Google Scholar 

  29. Bijlenga P, Liu JH, Espinos E et al (2000) T-type alpha 1H Ca2+ channels are involved in Ca2+ signaling during terminal differentiation (fusion) of human myoblasts. Proc Natl Acad Sci USA 97:7627–7632. doi:10.1073/pnas.97.13.7627

    Article  PubMed  CAS  Google Scholar 

  30. Etheredge JA, Murchison D, Abbott LC et al (2007) Functional compensation by other voltage-gated Ca2+ channels in mouse basal forebrain neurons with CaV2.1 mutations. Brain Res 1140:105–119. doi:10.1016/j.brainres.2005.11.007

    Article  PubMed  CAS  Google Scholar 

  31. Bers DM (2000) Calcium fluxes involved in control of cardiac myocyte contraction. Circ Res 87:275–281

    PubMed  CAS  Google Scholar 

  32. Shigekawa M, Iwamoto T (2001) Cardiac Na+-Ca2+ exchange: molecular and pharmacological aspects. Circ Res 88:864–876. doi:10.1161/hh0901.090298

    Article  PubMed  CAS  Google Scholar 

  33. Wang J, Weigand L, Lu W et al (2006) Hypoxia inducible factor 1 mediates hypoxia-induced TRPC expression and elevated intracellular Ca2+ in pulmonary arterial smooth muscle cells. Circ Res 98:1528–1537. doi:10.1161/01.RES.0000227551.68124.98

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by The British Heart Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Peers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aley, P.K., Wilkinson, J.A., Bauer, C.C. et al. Hypoxic remodelling of Ca2+ signalling in proliferating human arterial smooth muscle. Mol Cell Biochem 318, 101–108 (2008). https://doi.org/10.1007/s11010-008-9861-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9861-y

Keywords

Navigation