Skip to main content

Advertisement

Log in

Different functions between human monomeric carbonyl reductase 3 and carbonyl reductase 1

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Monomeric carbonyl reductases (CBRs) are enzymes that catalyze the reduction of many endogenous and xenobiotic carbonyl compounds, including steroids and prostaglandins. There are two monomeric CBR genes in the human genome, cbr1 and cbr3, which exhibit high homology in their amino acid sequences. Human CBR1 (hCBR1) is known as prostaglandin 9-keto reductase and 15-hydroxy dehydrogenase, and regulates the metastasis of cancer cells through the regulation of prostaglandin metabolism. However, there is little information concerning the molecular and enzymatic characteristics of human CBR3 (hCBR3). The present study demonstrated the tissue and cellular localization, and catalytic activity of hCBR3. Semi-quantitative PCR revealed the ubiquitous but lower expression of hCBR3 compared with that of hCBR1. Bacterially expressed hCBR3 exhibited limited catalytic activity toward menadione, 4-benzoylpyridine, and 4-nitrobenzaldehyde. Similar results were obtained when the cell lysates of CBR-overexpressing HEK293 cells were examined. Additionally, neither the prostaglandin 9-keto reductase nor the 15-hydroxy dehydrogenase activities of hCBR3 were significant. Immunofluorescence staining revealed that ectopically expressed hCBR3 proteins were localized in the cytosol of HEK293 cells. These results suggested that hCBR3 and hCBR1 play distinct physiological roles. This study expands our understanding of the relationship between the two monomeric hCBRs and prostaglandin metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hoffmann F, Maser E (2007) Carbonyl reductases and pluripotent hydroxysteroid dehydrogenases of the short-chain dehydrogenase/reductase superfamily. Drug Metab Rev 39:87–144 doi:10.1080/03602530600969440

    Article  PubMed  CAS  Google Scholar 

  2. Oppermann U (2007) Carbonyl reductases: the complex relationships of mammalian carbonyl- and quinine-reducing enzymes and their role on physiology. Annu Rev Pharmacol Toxicol 47:17.1–17.30

    Article  Google Scholar 

  3. Matsunaga T, Shintani S, Hara A (2006) Multiplicity of mammalian reductases for xenobiotic carbonyl compounds. Drug Metab Pharmacokinet 21(1):1–18 doi:10.2133/dmpk.21.1

    Article  PubMed  CAS  Google Scholar 

  4. Forrest GL, Gonzalez B (2000) Carbonyl reductase. Chem Biol Interact 129:21–40 doi:10.1016/S0009-2797(00)00196-4

    Article  PubMed  CAS  Google Scholar 

  5. Wermuth B, Platts KL, Seidel A, Oesch F (1986) Carbonyl reductase provides the enzymatic basis of quinine detoxification in man. Biochem Pharmacol Prov 35:1277–1282. doi:10.1016/0006-2952(86)90271-6

    Article  CAS  Google Scholar 

  6. Wermuth B, Bohren KM, Heinemann G, von Wartburg JP, Gabbay KH (1988) Human carbonyl reductase. Nucleotide sequence analysis of a cDNA and amino acid sequence of the encoded protein. J Biol Chem 263:16185–16188

    PubMed  CAS  Google Scholar 

  7. Watanabe K, Sugawara C, Ono A, Fukuzumi Y, Itakura S, Yamazaki M, et al (1998) Mapping of a novel human carbonyl reductase, CBR3, and ribosomal pseudogenes to human chromosome 21q22.2. Genomics 52(1):95–100 doi:10.1006/geno.1998.5380

    Article  PubMed  CAS  Google Scholar 

  8. Wei J, Dlouhy SR, Hara A, Ghetti B, Hodes ME (1996) Cloning a cDNA for carbonyl reductase (Cbr) from mouse cerebellum: murine genes that express cbr map to chromosomes 16 and 11. Genomics 34:147–148 doi:10.1006/geno.1996.0255

    Article  PubMed  CAS  Google Scholar 

  9. Olson LE, Bedja D, Alvey SJ, Cardounel AJ, Gabrielson KL, Reeves RH (2003) Protection from doxorubicin-induced cardiac toxicity in mice with a null allele of carbonyl reductase 1. Cancer Res 63:6602–6606

    PubMed  CAS  Google Scholar 

  10. Wermuth B (1981) Purification and properties of an NADPH-dependent carbonyl reductase from human brain. Relationship to prostaglandin 9-keto reductase and xenobiotic ketone reductase. J Biol Chem 256:1206–1213

    PubMed  CAS  Google Scholar 

  11. Takenaka K, Ogawa E, Oyanagi H, Wada H, Tanaka F (2005) Carbonyl reductase expression and its clinical significance in non-small-cell lung cancer. Cancer Epidemiol Biomarkers Prev 14(8):1972–1975 doi:10.1158/1055-9965.EPI-05-0060

    Article  PubMed  CAS  Google Scholar 

  12. Yokoyama Y, Xin B, Shigeto T, Umemoto M, Kasai-Sakamoto A, Futagami M, et al (2007) Clofibric acid, a peroxisome proliferator-activated receptor alpha ligand, inhibits growth of human ovarian cancer. Mol Cancer Ther 6:1379–1386 doi:10.1158/1535-7163.MCT-06-0722

    Article  PubMed  CAS  Google Scholar 

  13. Umemoto M, Yokoyama Y, Sato S, Tsuchida S, Al-Mulla F, Saito Y (2001) Carbonyl reductase as a significant predictor of survival and lymph node metastasis in epithelial ovarian cancer. Br J Cancer 85:1032–1036 doi:10.1038/sj.bjc.6692034

    Article  PubMed  CAS  Google Scholar 

  14. Ismail E, Al-Mulla F, Tsuchida S, Suto K, Motley P, Harrison PR, et al (2000) Carbonyl reductase: a novel metastasis modulating function. Cancer Res 60:1173–1176

    PubMed  CAS  Google Scholar 

  15. Waclawik A, Ziecik AJ (2007) Differential expression of prostaglandin (PG) synthesis enzymes in conceptus during peri-implantation period and endometrial expression of carbonyl reductase/PG 9-ketoreductase in the pig. J Endocrinol 194:499–510 doi:10.1677/JOE-07-0155

    Article  PubMed  CAS  Google Scholar 

  16. Lakhman SS, Ghosh D, Blanco JG (2005) Functional significance of a natural allelic variant of human carbonyl reductase 3 (CBR3). Drug Metab Dispos 33:254–257 doi:10.1124/dmd.104.002006

    Article  PubMed  CAS  Google Scholar 

  17. Iwata N, Inazu N, Takeo S, Satoh T (1990) Carbonyl reductases from rat testis and vas deferens. Purification, properties and localization. Eur J Biochem 193:75–81 doi:10.1111/j.1432-1033.1990.tb19306.x

    Article  PubMed  CAS  Google Scholar 

  18. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 doi:10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  19. Wirth H, Wermuth B (1992) Immunochemical characterization of carbonyl reductase in human tissues. J Histochem Cytochem 40:1857–1863 dehydrogenase, Proc Natl Acad Sci USA 90:502–506

    Google Scholar 

  20. Terada T, Sugihara Y, Nakamura K, Mizobuchi H, Maeda M (2003) Further characterization of Chinese hamster carbonyl reductases (CHCRs). Chem Biol Interact 143–144:373–381. doi:10.1016/S0009-2797(02)00208-9

    Article  PubMed  Google Scholar 

  21. Terada T, Sugihara Y, Nakamura K, Sato R, Sakuma S, Fujimoto Y, et al (2001) Characterization of multiple Chinese hamster carbonyl reductases. Chem Biol Interact 130–132:847–861. doi:10.1016/S0009-2797(00)00240-4

    Article  PubMed  Google Scholar 

  22. Tanaka M, Bateman R, Rauh D, Vaisberg E, Ramachandani S, Zhang C, et al (2005) An unbiased cell morphology-based screen for new, biologically active small molecules. PLoS Biol 3(5):e128. doi:10.1371/journal.pbio.0030128

    Article  PubMed  Google Scholar 

  23. Pilka ES, Rojkova A, Kavanagh KL, Niessen F, Sundstrom M, Arrowsmith C, et al (2006) Crystal structure of human carbonyl reductase 3, complexed with NADP+. Protein Data Bank, http://www.rcsb.org/pdb, Cited Jan 22, 2008

  24. Iwata N, Inazu N, Satoh T (1989) The purification and properties of NADPH-dependent carbonyl reductases from rat ovary. J Biochem 105:556–564

    PubMed  CAS  Google Scholar 

  25. Usami N, Kitahara K, Ishikura S, Nagano M, Sakai S, Hara A (2001) Characterization of a major form of human isatin reductase and the reduced metabolite. Eur J Biochem 268:5755–5763. doi:10.1046/j.0014-2956.2001.02510.x

    Article  PubMed  CAS  Google Scholar 

  26. Bohren KM, von Wartburg JP, Wermuth B (1987) Kinetics of carbonyl reductase from human brain. Biochem J 244:165–171

    PubMed  CAS  Google Scholar 

  27. Tinguely JN, Wermuth B (1999) Identification of the reactive cystein residue (Cys227) in human carbonyl reductase. Eur J Biochem 260:9–14.doi:10.1046/j.1432-1327.1999.00089.x

    Article  PubMed  CAS  Google Scholar 

  28. Sciotti M, Wermuth B (2001) Coenzyme specificity of human monomeric carbonyl reductase: contribution of Lys-15, Ala-37 and Arg-38. Chem Biol Interact 130–132:871–878. doi:10.1016/S0009-2797(00)00242-8

    Article  PubMed  Google Scholar 

  29. Ghosh D, Sawicki M, Pletnev V, Erman M, Ohno S, Nakajin S, et al (2001) Porcine carbonyl reductase. Structural basis for a functional monomer in short chain dehydrogenases/reductases. J Biol Chem 276:18457–18463. doi:10.1074/jbc.M100538200

    Article  PubMed  CAS  Google Scholar 

  30. Jornvall H, Persson B, Krook M, Atrian S, Gonzalez-Duarte R, Jeffery J, et al (1995) Short-chain dehydrogenases/reductases (SDR). Biochemistry 34:6003–6013. doi:10.1021/bi00018a001

    Article  PubMed  CAS  Google Scholar 

  31. Tanaka N, Nonaka T, Tanabe T, Yoshimoto T, Tsuru D, Mitsui Y (1996) Crystal structures of the binary and ternary complexes of 7α-hydroxysteroid dehydrogenase from Escherichia coli. Biochemistry 35:7715–7730. doi:10.1021/bi951904d

    Article  PubMed  CAS  Google Scholar 

  32. Krook M, Ghosh D, Stromberg R, Carlquist M, Jornvall H (1993) Carboxyethyllysine in a protein: native carbonyl reductase/NADP+-dependent prostaglandin dehydrogenase. Proc Natl Acad Sci USA 90:502–506. doi:10.1073/pnas.90.2.502

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a research grant from the Japan Food Chemical Research Foundation (T.T.), by the Osaka Ohtani University Research Fund (Pharmaceutical Science) (T.N.), and by a grant-in-aid for young scientists (B) 14771339 from the Ministry of Education, Culture, Sports, Science, and Technology, Japan (T.N.). The authors thank Mr. H. Mizobuchi for his participation in the initial stage in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Miura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miura, T., Nishinaka, T. & Terada, T. Different functions between human monomeric carbonyl reductase 3 and carbonyl reductase 1. Mol Cell Biochem 315, 113–121 (2008). https://doi.org/10.1007/s11010-008-9794-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9794-5

Keywords

Navigation