Skip to main content
Log in

Short-term effects of pressure overload on the expression of genes involved in calcium homeostasis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

We investigated whether in the isolated perfused rat heart acute pressure overload may affect the expression of genes involved in calcium homeostasis, namely sarcolemmal L-type Ca2+ channel, Na+/Ca2+ exchanger, sarcoplasmic reticulum Ca2+-ATPase, phospholamban, and ryanodine receptor. Hearts were subjected to 210 min of perfusion under the following conditions: (i) standard working heart perfusion with preload and afterload set at 20 and 100 cm, respectively; (ii) working heart perfusion at high afterload (180 cm); (iii) retrograde infusion of St. Thomas’ Hospital cardioplegic solution. In all models gene expression was determined by RT-PCR. Significant decrease in the expression of the sarcoplasmic reticulum Ca2+-ATPase gene was observed in the high afterload group. No significant change in the expression of any other gene was observed in any group. The reported effect was not detected after 60 min of perfusion, and it was blunted in the presence of the protein kinase C inhibitor chelerythrine, while the calcineurin inhibitor cyclosporin A was ineffective. In conclusion, the sarcoplasmic reticulum Ca2+-ATPase gene is downregulated after short-term (210 min) perfusion at high afterload, possibly through a protein kinase C-dependent pathway. This mechanism might play a relevant pathophysiological role in the response to pressure overload and in the development of hypertrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, Grant SR, Olson EN (1998) A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93:215–228

    Article  PubMed  CAS  Google Scholar 

  2. Chen KR (1999) Stress pathways and heart failure. Cell 98:555–558

    Article  Google Scholar 

  3. Frey N, McKinsey TA, Olson EN (2000) Decoding calcium signals involved in cardiac growth and function. Nat Med 6:1221–1227

    Article  PubMed  CAS  Google Scholar 

  4. Passier R, Zeng H, Frey N, Naya FJ, Nicol RL, McKinsey TA, Overbeek P, Richardson JA, Grant SR, Olson EN (2000) CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo. J Clin Invest 105:1395–1406

    Article  PubMed  CAS  Google Scholar 

  5. Benitah JP, Gomez AM, Virsolvy A, Richard S (2003) New perspectives on the key role of calcium in the progression of heart disease. J Muscle Res Cell Motil 24:275–283

    Article  PubMed  CAS  Google Scholar 

  6. Wilkins BJ, Molkentin JD (2004) Calcium-calcineurin signaling in the regulation of cardiac hypertrophy. Biochem Biophys Res Commun 322:1178–1191

    Article  PubMed  CAS  Google Scholar 

  7. Zhang T, Brown JH (2004) Role of Ca2+/calmodulin-dependent protein kinase II in cardiac hypertrophy and heart failure. Cardiovasc Res 63:476–486

    Article  PubMed  CAS  Google Scholar 

  8. McKinsey TA, Olson EN (2005) Towards transcriptional therapies for the failing heart: chemical screens to modulate genes. J Clin Invest 115:538–546

    PubMed  CAS  Google Scholar 

  9. Sanoudou D, Vafiadaki E, Arvanitis DA, Kranias E, Kontrogianni-Konstantopoulos A (2005) Array lessons from the heart: focus on genome and transcriptome of cardiomyopathies. Physiol Genomics 21:131–143

    Article  PubMed  CAS  Google Scholar 

  10. Zucchi R, Ronca-Testoni S (1997) The sarcoplasmic reticulum Ca2+ channel/ryanodine receptor: modulation by endogenous effectors, drugs and disease states. Pharmacol Rev 49:1–51

    PubMed  CAS  Google Scholar 

  11. Houser SR, Piacentino V, Weissner J (2000) Abnormalities of calcium cycling in the hypertrophied and failing heart. J Mol Cell Cardiol 32:1595–1607

    Article  PubMed  CAS  Google Scholar 

  12. Ravens U, Dobrev D (2000) Regulation of sarcoplasmic reticulum Ca2+-ATPase and phospholamban in the failing and nonfailing heart. Cardiovasc Res 45:245–252

    Article  PubMed  CAS  Google Scholar 

  13. Sipido KR, Volders PGA, Vos MA, Verdonck F (2002) Altered Na/Ca exchange activity in cardiac hypertrophy and heart failure: a new target for therapy? Cardiovasc Res 53:782–805

    Article  PubMed  CAS  Google Scholar 

  14. Zarain-Herzberg A (2006) Regulation of the sarcoplasmic reticulum Ca2+-ATPase expression in the hypertrophic and failing heart. Can J Physiol Pharmacol 84:509–521

    PubMed  CAS  Google Scholar 

  15. Ghelardoni S, Carnicelli V, Frascarelli S, Lankford A, Masala I, Ronca-Testoni S, Matherne GP, Zucchi R (2005) Effects of A1 adenosine receptor stimulation on the expression of genes involved in calcium homeostasis. J Mol Cell Cardiol 39:964–971

    Article  PubMed  CAS  Google Scholar 

  16. Zucchi R, Ghelardoni S, Carnicelli V, Frascarelli S, Ronca F, Ronca-Testoni S (2002) Ca2+ channel remodeling in perfused heart: effects of mechanical work and interventions affecting Ca2+ cycling on sarcolemmal and sarcoplasmic reticulum Ca2+ channels. FASEB J 16:1976–1978

    PubMed  CAS  Google Scholar 

  17. Zucchi R, Limbruno U, Di Vincenzo A, Mariani M, Ronca G (1990) Adenine nucleotide depletion and contractile dysfunction in the “stunned” myocardium. Cardiovasc Res 24:440–446

    Article  PubMed  CAS  Google Scholar 

  18. Bers DM (2002) Cardiac excitation–contraction coupling. Nature 415:198–205

    Article  PubMed  CAS  Google Scholar 

  19. Periasamy M, Huke S (2001) SERCA pump level is a critical determinant of Ca2+ homeostasis and cardiac contractility. J Mol Cell Cardiol 33:1053–1063

    Article  PubMed  CAS  Google Scholar 

  20. Bassani JW, Qi M, Samarel AM, Bers DM (1994) Contractile arrest increases sarcoplasmic reticulum calcium uptake and SERCA2 gene expression in cultured neonatal rat heart cells. Circ Res 74:991–997

    PubMed  CAS  Google Scholar 

  21. Cadre BM, Qi M, Eble DM, Shannon TR, Bers DM, Samarel AM (1998) Cyclic stretch down-regulates calcium transporter gene expression in neonatal rat ventricular myocytes. J Mol Cell Cardiol 30:2247–2259

    Article  PubMed  CAS  Google Scholar 

  22. Porter MJ, Heidkamp MC, Scully BT, Patel N, Martin JL, Samarel AM (2003) Isoenzyme-selective regulation of SERCA2 gene expression by protein kinase C in neonatal rat ventricular myocytes. Am J Physiol 285:C39–C47

    CAS  Google Scholar 

  23. Moschella PC, Rao VU, McDermott PJ, Kuppuswamy D (2007) Regulation of mTOR and S6K1 activation by the nPKC isoforms, PKCepsilon and PKCdelta, in adult cardiac muscle cells. J Mol Cell Cardiol 43:754–766

    Article  PubMed  CAS  Google Scholar 

  24. Andrews C, Ho PD, Dillmann WH, Glembotski CC, McDonough PM (2003) The MKK6-p38 MAPK pathway prolongs the cardiac contractile calcium transient, downregulates SERCA2, and activates NF-AT. Cardiovasc Res 59:46–56

    Article  PubMed  CAS  Google Scholar 

  25. Heidkamp MC, Scully BT, Vijayan K, Engman SJ, Szotek EL, Samarel AM (2005) PYK2 regulates SERCA2 gene expression in neonatal rat ventricular myocytes. Am J Physiol 289:C471–C482

    Article  CAS  Google Scholar 

  26. Schunkert H, Jahn L, Izumo S, Apstein CS, Lorell BH (1991) Localization and regulation of c-fos and c-jun proto-oncogene induction by systolic wall stress in normal and hypertrophied rat hearts. Proc Natl Acad Sci USA 88:11480–11484

    Article  PubMed  CAS  Google Scholar 

  27. Kolbeck-Ruhmkorff C, Horban A, Zimmer HG (1993) Effect of pressure and volume overload on proto-oncogene expression in the isolated working rat heart. Cardiovasc Res 28:1062–1069

    Google Scholar 

  28. Slinker BK, Stephens RL, Fisher SA, Yang Q (1996) Immediate-early gene responses to different cardiac loads in the ejecting rabbit left ventricle. J Mol Cell Cardiol 28:1565–1574

    Article  PubMed  CAS  Google Scholar 

  29. Nadruz W, Kobarg CB, Constancio SS, Corat PDC, Franchini KG (2003) Load-induced transcriptional activation of c-jun in rat myocardium. Circ Res 92:243–251

    Article  PubMed  CAS  Google Scholar 

  30. Zucchi R, Ronca F, Ronca-Testoni S (2001) Modulation of sarcoplasmic reticulum function: a new strategy in cardioprotection? Pharmacol Ther 89:47–65

    Article  PubMed  CAS  Google Scholar 

  31. Carvalho BMR, Bassani RA, Franchini KG, Bassani JWM (2006) Enhanced calcium mobilization in rat ventricular myocytes during the onset of pressure overload-induced hypertrophy. Am J Physiol Heart Circ Physiol 291:H1803–H1813

    Article  PubMed  CAS  Google Scholar 

  32. Müller OJ, Lange M, Rattunde H, Lorenzen HP, Müller M, Frey N, Bittner C, Simonides W, Katus HA, Franz WM (2003) Transgenic rat hearts overexpressing SERCA2 show improved contractility under baseline conditions and pressure overload. Cardiovasc Res 59:380–389

    Article  PubMed  CAS  Google Scholar 

  33. Teucher N, Prestle J, Seidler T, Currie S, Elliott EB, Reynolds DF, Schott P, Wagner S, Kogler H, Inesi G, Bers DM, Hasenfuss G, Smith GL (2004) Excessive sarcoplasmic/endoplasmic reticulum Ca2+-ATPase expression increases sarcoplasmic reticulum Ca2+ uptake but decreases myocyte shortening. Circulation 110:3553–3559

    Article  PubMed  CAS  Google Scholar 

  34. Rubio M, Bodi I, Fuller-Bicer GA, Hahn HS, Periasamy M, Schwartz A (2005) Sarcoplasmic reticulum adenosine triphosphatase overexpression in the L-type Ca2+ channel mouse results in cardiomyopathy and Ca2+-induced arrhythmogenesis. J Cardiovasc Pharmacol Ther 10:235–249

    Article  PubMed  CAS  Google Scholar 

  35. Frass O, Sharma HS, Knöll R, Duncker DJ, McFalls EO, Verdouw PD, Schaper W (1993) Enhanced gene expression of calcium regulatory proteins in porcine stunned myocardium. Cardiovasc Res 27:2037–2043

    Article  PubMed  CAS  Google Scholar 

  36. Schaper W (1995) Stunned myocardium: an opinionated review. Basic Res Cardiol 90:273–275

    Article  PubMed  CAS  Google Scholar 

  37. Temsah RM, Netticadan T, Chapman D, Takeda S, Mochizuki S, Dhalla NS (1999) Alterations in sarcoplasmic reticulum function and gene expression in the ischemic-reperfused rat heart. Am J Physiol 277:H584–H594

    PubMed  CAS  Google Scholar 

  38. Sommerschild HT, Lunde PK, Deindl E, Jynge P, Ilebekk A, Kirkeboen KA (1999) Elevated levels of endogenous adenosine alter metabolism and enhance reduction in contractile function during low-flow ischemia: associated changes in expression of Ca2+-ATPase and phospholamban. J Mol Cell Cardiol 31:1897–1911

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Zucchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carnicelli, V., Frascarelli, S., Ghelardoni, S. et al. Short-term effects of pressure overload on the expression of genes involved in calcium homeostasis. Mol Cell Biochem 313, 29–36 (2008). https://doi.org/10.1007/s11010-008-9738-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9738-0

Keywords

Navigation