Skip to main content
Log in

Brain microvascular and intracranial artery resistance to atherosclerosis is associated with heme oxygenase and ferritin in Japanese quail

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Oxidative stress and increased oxidation of low-density lipoprotein (oxLDL) through free radical-mediated tissue injury may be important factors in the development of extracranial atherosclerotic lesions. However, the roles of oxidative stress and hypercholesterolemia in intracranial atherosclerosis is less established. The induction of heme oxygenase (HO) is a cellular response to oxidative stress, and inducible HO (HO-1) may protect against oxidized lipids such as those produced by oxidative stress. We investigated the effects of oxLDL on cell and tissue viability, HO-1 and ferritin expression in extracranial and intracranial endothelial cells, and the arteries of cholesterol-induced atherosclerosis (CIA) Japanese quail. We report that cultured microvascular endothelial cells from the brain (QBMEC) and carotid (QCEC) differ in their response to oxidative stress. The QCECs are less responsive than QBMECs to oxidative stress induced by oxLDL, as evident by lower expression of HO-1 mRNA, HO activity, and ferritin levels. Furthermore, the higher levels of catalytic iron, thiobarbituric acid reactive substances, and lactate dehydrogenase released in QCECs indicated that these cells are more susceptible to oxidative stress than QBMECs. We also investigated the relationship between extent of atherosclerotic plaque deposition and the extracranial and intracranial arterial expression of HO-1 in quail. The common carotid and vertebral (extracranial) arteries had higher tissue cholesterol levels (starting at 2 weeks of cholesterol-supplementation) and a greater atherosclerotic plaque score (starting at 4 weeks of cholesterol-supplementation) compared with middle cerebral and basilar (intracranial) arteries, and this may be relevant to the effect of aging on the process of atherogenesis. The extracranial arteries also had early and greater levels of lipid peroxidation and catalytic iron coupled with lower expression of HO-1 protein, HO activity, and ferritin compared to the intracranial vessels. These observations suggest that the extracranial and intracranial arterial walls respond differently to oxidation of lipoproteins, and support the feasibility of increased HO-1 expression as a means of protection against oxidant injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CIA:

Cholesterol-induced atherosclerosis

HO:

Heme oxygenase

QAEC:

Quail aortic endothelial cells

QBMEC:

Quail brain microvascular endothelial cells

EC:

Endothelial cells

oxLDL:

Oxidized low-density lipoprotein

References

  1. De Nigris F, Lerman LO, Condorelli M et al (2001) Oxidation-sensitive transcription factors and molecular mechanisms in the arterial wall. Antioxid Redox Signal 3:1119–1130

    Article  PubMed  Google Scholar 

  2. Witztum JL, Steinberg D (1991) Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest 88:1785–1792

    PubMed  CAS  Google Scholar 

  3. Postiglione A, Napoli C (1995) Hyperlipidaemia and atherosclerotic cerebrovascular disease. Curr Opin Lipidol 6:236–242

    Article  PubMed  CAS  Google Scholar 

  4. Mathur KS, Kashyap SK, Kumar V (1963) Correlation of the extent and severity of atherosclerosis in the coronary and cerebral arteries. Circulation 27:929–934

    PubMed  CAS  Google Scholar 

  5. Murata K, Terasawa F, Hosoda H et al (1971) Relation of blood pressure and serum total cholesterol to severity of atherosclerotic lesions in aorta, coronary and cerebral arteries. Jpn Heart J 12:460–466

    PubMed  CAS  Google Scholar 

  6. Mahley RW, Innerarity TL, Weisgraber KH et al (1977) Canine hyperlipoproteinemia and atherosclerosis. Accumulation of lipid by aortic medial cells in vivo and in vitro. Am J Pathol 87:205–225

    PubMed  CAS  Google Scholar 

  7. Ito T, Shiomi M (2001) Cerebral atherosclerosis occurs spontaneously in homozygous WHHL rabbits. Atherosclerosis 156:57–66

    Article  PubMed  CAS  Google Scholar 

  8. Napoli C, Witztum JL, De Nigris F et al (1999) Intracranial arteries of human fetuses are more resistant to hypercholesterolemia-induced fatty streak formation than extracranial arteries. Circulation 99:2003–2010

    PubMed  CAS  Google Scholar 

  9. Mayhan WG (2001) Regulation of blood-brain barrier permeability. Microcirculation 8:89–104

    Article  PubMed  CAS  Google Scholar 

  10. Yamaguchi M, Sato H, Bannai S (1993) Induction of stress proteins in mouse peritoneal macrophages by oxidized low-density lipoprotein. Biochem Biophys Res Commun 193:1198–1201

    Article  PubMed  CAS  Google Scholar 

  11. Agarwal A, Balla J, Balla G et al (1996) Renal tubular epithelial cells mimic endothelial cells upon exposure to oxidized LDL. Am J Physiol 271:F814–F823

    PubMed  CAS  Google Scholar 

  12. Ryter SW, Alam J, Choi AM (2006) Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev 86:583–650

    Article  PubMed  CAS  Google Scholar 

  13. Wang LJ, Lee TS, Lee FY et al (1998) Expression of heme oxygenase-1 in atherosclerotic lesions. Am J Pathol 152:711–720

    PubMed  CAS  Google Scholar 

  14. Morita T (2005) Heme oxygenase and atherosclerosis. Arterioscler Thromb Vasc Biol 25:1786–1795

    Article  PubMed  CAS  Google Scholar 

  15. Hoekstra KA, Godin DV, Cheng KM et al (2004) Protective role of heme oxygenase in the blood vessel wall during atherogenesis. Biochem Cell Biol 82:351–359

    Article  PubMed  CAS  Google Scholar 

  16. Hoekstra KA, Godin DV, Kurtu J et al (2003) Effects of oxidant-induced injury on heme oxygenase and glutathione in cultured aortic endothelial cells from atherosclerosis-susceptible and -resistant Japanese quail. Mol Cell Biochem 254:61–71

    Article  PubMed  CAS  Google Scholar 

  17. Hoekstra KA, Godin DV, Kurtu J et al (2003) Heme oxygenase and antioxidant status in cultured aortic endothelial cells isolated from atherosclerosis-susceptible and -resistant Japanese quail. Mol Cell Biochem 252:253–262

    Article  PubMed  CAS  Google Scholar 

  18. Velleman SG, Bacon W, Whitmoyer R et al (1998) Changes in distribution of glycosaminoglycans during the progression of cholesterol induced atherosclerosis in Japanese quail. Atherosclerosis 137:63–70

    Article  PubMed  CAS  Google Scholar 

  19. Mischeck U, Meyer J, Galla HJ et al (1989) Characterization of gamma-glutamyl transpeptidase activity of cultured endothelial cells from porcine brain capillaries. Cell Tissue Res 256:221–226

    Article  PubMed  CAS  Google Scholar 

  20. Teifel M, Friedl P (1996) Establishment of the permanent microvascular endothelial cell line PBMEC/C1-2 from porcine brains. Exp Cell Res 228:50–57

    Article  PubMed  CAS  Google Scholar 

  21. Griffin BA, Caslake MJ, Yip B et al (1990) Rapid isolation of low density lipoprotein (LDL) subfractions from plasma by density gradient ultracentrifugation. Atherosclerosis 83:59–67

    Article  PubMed  CAS  Google Scholar 

  22. Hoekstra KA, Nichols CR, Garnett ME et al (1998) Dietary cholesterol-induced xanthomatosis in atherosclerosis-susceptible Japanese quail (Cotunix japonica). J Comp Pathol 119:419–427

    Article  PubMed  CAS  Google Scholar 

  23. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  24. Wohaieb SA, Godin DV (1987) Starvation-related alterations in free radical tissue defense mechanisms in rats. Diabetes 36:169–173

    Article  PubMed  CAS  Google Scholar 

  25. Gutteridge JM, Rowley RA, Halliwell B et al (1981) Superoxide-dependent formation of hydroxyl radicals in the presence of iron salts. Detection of ‘free’ iron in biological systems by using bleomycin-dependent degradation of DNA. Biochem J 199:263–265

    PubMed  CAS  Google Scholar 

  26. Shih JC, Pullman EP, Kao KJ et al (1983) Genetic selection, general characterization, and histology of atherosclerosis-susceptible and -resistant Japanese quail. Atherosclerosis 49:41–53

    Article  PubMed  CAS  Google Scholar 

  27. Ishikawa K, Navab M, Leitinger N et al (1997) Induction of heme oxygenase-1 inhibits the monocyte transmigration induced by mildly oxidized LDL. J Clin Invest 100:1209–1216

    PubMed  CAS  Google Scholar 

  28. Shi W, Haberland ME, Jien ML et al (2000) Endothelial responses to oxidized lipoproteins determine genetic susceptibility to atherosclerosis in mice. Circulation 102:75–81

    PubMed  CAS  Google Scholar 

  29. D’Armiento FP, Bianchi A, de Nigris F et al (2001) Age-related effects on atherogenesis and scavenger enzymes of intracranial and extracranial arteries in men without classic risk factors for atherosclerosis. Stroke 32:2472–2479

    Article  PubMed  CAS  Google Scholar 

  30. Napoli C, Witztum JL, de Nigris F et al (1999) Intracranial arteries of human fetuses are more resistant to hypercholesterolemia-induced fatty streak formation than extracranial arteries. Circulation 99:2003–2010

    PubMed  CAS  Google Scholar 

  31. Tenhunen R, Marver HS, Schmid R (1968) The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc Natl Acad Sci U S A 61:748–755

    Article  PubMed  CAS  Google Scholar 

  32. Nakayama M, Takahashi K, Komaru T et al (2001) Increased expression of heme oxygenase-1 and bilirubin accumulation in foam cells of rabbit atherosclerotic lesions. Arterioscler Thromb Vasc Biol 21:1373–1377

    Article  PubMed  CAS  Google Scholar 

  33. Van Lenten BJ, Prieve J, Navab M et al (1995) Lipid-induced changes in intracellular iron homeostasis in vitro and in vivo. J Clin Invest 95:2104–2110

    Article  PubMed  Google Scholar 

  34. Otterbein LE, Zuckerbraun BS, Haga M et al (2003) Carbon monoxide suppresses arteriosclerotic lesions associated with chronic graft rejection and with balloon injury. Nat Med 9:183–190

    Article  PubMed  CAS  Google Scholar 

  35. Ishikawa K, Sugawara D, Wang X et al (2001) Heme oxygenase-1 inhibits atherosclerotic lesion formation in LDL-receptor knockout mice. Circ Res 88:506–512

    PubMed  CAS  Google Scholar 

  36. Durante W, Kroll MH, Christodoulides N et al (1997) Nitric oxide induces heme oxygenase-1 gene expression and carbon monoxide production in vascular smooth muscle cells. Circ Res 80:557–564

    PubMed  CAS  Google Scholar 

  37. Wu TW, Fung KP, Wu J et al (1996) Antioxidation of human low density lipoprotein by unconjugated and conjugated bilirubins. Biochem Pharmacol 51:859–862

    Article  PubMed  CAS  Google Scholar 

  38. Mayer M (2000) Association of serum bilirubin concentration with risk of coronary artery disease. Clin Chem 46:1723–1727

    PubMed  CAS  Google Scholar 

  39. Juan SH, Lee TS, Tseng KW et al (2001) Adenovirus-mediated heme oxygenase-1 gene transfer inhibits the development of atherosclerosis in apolipoprotein E-deficient mice. Circulation 104:1519–1525

    Article  PubMed  CAS  Google Scholar 

  40. Meyers DG (2000) The iron hypothesis: does iron play a role in atherosclerosis? Transfusion 40:1023–1029

    Article  PubMed  CAS  Google Scholar 

  41. Juckett MB, Balla J, Balla G et al (1995) Ferritin protects endothelial cells from oxidized low density lipoprotein in vitro. Am J Pathol 147:782–789

    PubMed  CAS  Google Scholar 

  42. Ponraj D, Makjanic J, Thong PS et al (1999) The onset of atherosclerotic lesion formation in hypercholesterolemic rabbits is delayed by iron depletion. FEBS Lett 459:218–222

    Article  PubMed  CAS  Google Scholar 

  43. Plump AS, Smith JD, Hayek T et al (1992) Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 71:343–353

    Article  PubMed  CAS  Google Scholar 

  44. Ishikawa K, Sugawara D, Goto J (2001) Heme oxygenase-1 inhibits atherogenesis in Watanabe heritable hyperlipidemic rabbits. Circulation 104:1831–1836

    Article  PubMed  CAS  Google Scholar 

  45. Napoli C, de Nigris F, Welch JS et al (2002) Maternal hypercholesterolemia during pregnancy promotes early atherogenesis in LDL receptor-deficient mice and alters aortic gene expression determined by microarray. Circulation 105:1360–1367

    Article  PubMed  CAS  Google Scholar 

  46. Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci U S A 90:7915–7922

    Article  PubMed  CAS  Google Scholar 

  47. ‘t Hoen PA, Van der Lans CA, Van Eck M et al (2003) Aorta of ApoE-deficient mice responds to atherogenic stimuli by a prelesional increase and subsequent decrease in the expression of antioxidant enzymes. Circ Res 93:262–269

    Article  PubMed  CAS  Google Scholar 

  48. Griendling KK, Sorescu D, Lassegue B et al (2000) Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arterioscler Thromb Vasc Biol 20:2175–2183

    PubMed  CAS  Google Scholar 

  49. Lin SJ, Shyue SK, Shih MC et al (2007) Superoxide dismutase and catalase inhibit oxidized low-density lipoprotein-induced human aortic smooth muscle cell proliferation: role of cell-cycle regulation, mitogen-activated protein kinases, and transcription factors. Atherosclerosis 190:124–134

    Article  PubMed  CAS  Google Scholar 

  50. Lehoux S (2006) Redox signalling in vascular responses to shear and stretch. Cardiovasc Res 71:269–279

    Article  PubMed  CAS  Google Scholar 

  51. Yee A, Sakurai Y, Eskin SG et al (2006) A validated system for simulating common carotid arterial flow in vitro: alteration of endothelial cell response. Ann Biomed Eng 34:593–604

    Article  PubMed  Google Scholar 

  52. De Keulenaer GW, Chappell DC, Ishizaka N et al (1998) Oscillatory and steady laminar shear stress differentially affect human endothelial redox state: role of a superoxide-producing NADH oxidase. Circ Res 82:1094–1101

    PubMed  Google Scholar 

  53. Selivonchick DP, Roots BI (1977) Lipid and fatty acyl composition of rat brain capillary endothelia isolated by a new technique. Lipids 12:165–169

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the technical staff at the Pulmonary Research Centre, St. Pauls Hospital, Vancouver, BC, Canada and Cindy Coy at Ohio State University for technical assistance. Special thanks to Prof. Carollo and Dr. B. Boal for their critical review. The quail endothelial cell antibody (QH1) was a gift from Dr. C.A. Buck, The Wistar Institute, Philadelphia, PA, USA. The quail smooth muscle antibody (1E12) was a gift from Dr. C.D. Little, Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, USA. Research support to SGV was provided by state and federal funds appropriated to the Ohio Agricultural Research and Development Center, The Ohio State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth A. Hoekstra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoekstra, K.A., Velleman, S.G. Brain microvascular and intracranial artery resistance to atherosclerosis is associated with heme oxygenase and ferritin in Japanese quail. Mol Cell Biochem 307, 1–12 (2008). https://doi.org/10.1007/s11010-007-9577-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-007-9577-4

Keywords

Navigation