Skip to main content
Log in

A Validated System for Simulating Common Carotid Arterial Flow In Vitro: Alteration of Endothelial Cell Response

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Pulsations in blood flow alter gene and protein expressions in endothelial cells (EC). A computer-controlled system was developed to mimic the common carotid artery flow waveform and shear stress levels or to provide steady flow of the same mean shear stress in a parallel plate flow chamber. The pseudo-steady state shear stress was determined from real-time pressure gradient measurements and compared to the Navier–Stokes equation solution. Following 24 h of steady flow (SF: 13 dyne/cm2), pulsatile arterial flow (AF: average=13 dyne/cm2, range=7–25 dyne/cm2) or static conditions, heme oxygenase-1 (HO-1) and prostaglandin H synthase-2 (PGHS-2) mRNA and protein expressions from human umbilical vein endothelial cells were measured. Relative to steady flow, pulsatile arterial flow significantly attenuated mRNA upregulation of HO-1 (SF: 7.26±2.70-fold over static, AF: 4.84±0.37-fold over static; p < 0.01) and PGHS-2 (SF: 6.11±1.79-fold over static, AF: 3.54±0.79-fold over static; p < 0.001). Pulsatile arterial flow (4.57±0.81-fold over static, p < 0.01) also significantly reduced the steady-flow-induced HO-1 protein upregulation (7.99±1.29-fold over static). These findings reveal that EC can discriminate between different flow patterns of the same average magnitude and respond at the molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.
FIGURE 6.
FIGURE 7.

Similar content being viewed by others

REFERENCES

  1. Bacabac, R. G., T. H. Smit, S. C. Cowin, J. J. Van Loon, F. T. Nieuwstadt, R. Heethaar, and J. Klein-Nulend. Dynamic shear stress in parallel-plate flow chambers. J. Biomech. 38:159–167, 2005.

    PubMed  Google Scholar 

  2. Balcells, M., M. Fernandez Suarez, M. Vazquez, and E. R. Edelman. Cells in fluidic environments are sensitive to flow frequency. J. Cell Physiol. 204:329–335, 2005.

    Article  PubMed  CAS  Google Scholar 

  3. Bao, X., C. M. Lu, and J. A. Frangos. Temporal gradient in shear but not steady shear stress induces PDGF-A and MCP-1 expression in endothelial cells: Role of NO, NF kappa B, and egr-1. Arterioscler. Thromb. Vasc. Biol. 19:996–1003, 1999.

    PubMed  CAS  Google Scholar 

  4. Blackman, B. R., G. Garcia-Cardena, and M. A. Gimbrone Jr. A new in vitro model to evaluate differential responses of endothelial cells to simulated arterial shear stress waveforms. J. Biomech. Eng. 124:397–407, 2002.

    Article  PubMed  Google Scholar 

  5. Butler, P. J., T. C. Tsou, J. Y. Li, S. Usami, and S. Chien. Rate sensitivity of shear-induced changes in the lateral diffusion of endothelial cell membrane lipids: A role for membrane perturbation in shear-induced MAPK activation. FASEB J. 16:216–218, 2002.

    PubMed  CAS  Google Scholar 

  6. Chappell, D. C., S. E. Varner, R. M. Nerem, R. M. Medford, and R. W. Alexander. Oscillatory shear stress stimulates adhesion molecule expression in cultured human endothelium. Circ. Res. 82:532–539, 1998.

    PubMed  CAS  Google Scholar 

  7. Chen, X. L., S. E. Varner, A. S. Rao, J. Y. Grey, S. Thomas, C. K. Cook, M. A. Wasserman, R. M. Medford, A. K. Jaiswal, and C. Kunsch. Laminar flow induction of antioxidant response element-mediated genes in endothelial cells. A novel anti-inflammatory mechanism. J. Biol. Chem. 278:703–711, 2003.

    Article  PubMed  CAS  Google Scholar 

  8. Curtis, A. S., J. V. Forrester, C. McInnes, and F. Lawrie. Adhesion of cells to polystyrene surfaces. J. Cell Biol. 97:1500–1506, 1983.

    Article  PubMed  CAS  Google Scholar 

  9. Dai, G., M. R. Kaazempur-Mofrad, S. Natarajan, Y. Zhang, S. Vaughn, B. R. Blackman, R. D. Kamm, G. Garcia-Cardena, and M. A. Gimbrone Jr. Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature. Proc. Natl. Acad. Sci. U.S.A. 101:14871–14876, 2004.

    Article  PubMed  CAS  Google Scholar 

  10. Dancu, M. B., D. E. Berardi, J. P. Vanden Heuvel, and J. M. Tarbell. Asynchronous shear stress and circumferential strain reduces endothelial NO synthase and cyclooxygenase-2 but induces endothelin-1 gene expression in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 24:2088–2094, 2004.

    Article  PubMed  CAS  Google Scholar 

  11. De Keulenaer, G. W., D. C. Chappell, N. Ishizaka, R. M. Nerem, R. W. Alexander, and K. K. Griendling. Oscillatory and steady laminar shear stress differentially affect human endothelial redox state: Role of a superoxide-producing NADH oxidase. Circ. Res. 82:1094–1101, 1998.

    PubMed  CAS  Google Scholar 

  12. Drakos, S. G., C. E. Charitos, A. Ntalianis, J. V. Terrovitis, K. X. Siafakas, P. Dolou, C. Pierrakos, E. Charitos, J. Karelas, and J. N. Nanas. Comparison of pulsatile with nonpulsatile mechanical support in a porcine model of profound cardiogenic shock. ASAIO J. 51:26–29, 2005.

    Article  PubMed  Google Scholar 

  13. Dusserre, N., N. L'Heureux, K. S. Bell, H. Y. Stevens, J. Yeh, L. A. Otte, L. Loufrani, and J. A. Frangos. PECAM-1 interacts with nitric oxide synthase in human endothelial cells: implication for flow-induced nitric oxide synthase activation. Arterioscler. Thromb. Vasc. Biol. 24:1796–1802, 2004.

    Article  PubMed  CAS  Google Scholar 

  14. Elhadj, S., R. M. Akers, and K. Forsten-Williams. Chronic pulsatile shear stress alters insulin-like growth factor-I (IGF-I) binding protein release in vitro. Ann. Biomed. Eng. 31:163–170, 2003.

    Article  PubMed  Google Scholar 

  15. Eskin, S. G., N. A. Turner, and L. V. McIntire. Endothelial cell cytochrome P450 1A1 and 1B1: Up-regulation by shear stress. Endothelium 11:1–10, 2004.

    Article  PubMed  CAS  Google Scholar 

  16. Fish, J. E., C. C. Matouk, A. Rachlis, S. Lin, S. C. Tai, C. D'Abreo, and P. A. Marsden. The expression of endothelial nitric-oxide synthase is controlled by a cell-specific histone code. J. Biol. Chem. 280:24824–24838, 2005.

    Article  PubMed  CAS  Google Scholar 

  17. Florian, J. A., J. R. Kosky, K. Ainslie, Z. Pang, R. O. Dull, and J. M. Tarbell. Heparan sulfate proteoglycan is a mechanosensor on endothelial cells. Circ. Res. 93:e136–e142, 2003.

    Article  PubMed  CAS  Google Scholar 

  18. Frangos, J. A., L. V. McIntire, and S. G. Eskin. Shear stress induced stimulation of mammalian cell metabolism. Biotech. Bioeng. 32:1053–1060, 1987.

    Article  Google Scholar 

  19. Frangos, J. A., S. G. Eskin, L. V. McIntire, and C. L. Ives. Flow effects on prostacyclin production by cultured human endothelial cells. Science 227:1477–1479, 1985.

    Article  PubMed  CAS  Google Scholar 

  20. Frye, S. R., A. Yee, S. G. Eskin, R. Guerra, X. Cong, and L. V. McIntire. cDNA microarray analysis of endothelial cells subjected to cyclic mechanical strain: importance of motion control. Physiol. Genom. 21:124–130, 2005.

    Article  CAS  Google Scholar 

  21. He, X., D. N. Ku, and J. E. Moore Jr. Simple calculation of the velocity profiles for pulsatile flow in a blood vessel using Mathematica. Ann. Biomed. Eng. 21:45–49, 1993.

    Article  PubMed  CAS  Google Scholar 

  22. Hoffmann, J., S. Dimmeler, and J. Haendeler. Shear stress increases the amount of S-nitrosylated molecules in endothelial cells: Important role for signal transduction. FEBS Lett. 551:153–158, 2003.

    Article  PubMed  CAS  Google Scholar 

  23. Hosoya, T., A. Maruyama, M. I. Kang, Y. Kawatani, T. Shibata, K. Uchida, E. Warabi, N. Noguchi, K. Itoh, and M. Yamamoto. Differential responses of the Nrf2-Keap1 system to laminar and oscillatory shear stresses in endothelial cells. J. Biol. Chem. 280:27244–27250, 2005.

    Article  PubMed  CAS  Google Scholar 

  24. Hsiai, T. K., S. K. Cho, S. Reddy, S. Hama, M. Navab, L. L. Demer, H. M. Honda, and C. M. Ho. Pulsatile flow regulates monocyte adhesion to oxidized lipid-induced endothelial cells. Arterioscler. Thromb. Vasc. Biol. 21:1770–1776, 2001.

    Article  PubMed  CAS  Google Scholar 

  25. Ishii, T., K. Itoh, S. Takahashi, H. Sato, T. Yanagawa, Y. Katoh, S. Bannai, and M. Yamamoto. Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J. Biol. Chem. 275:16023–16029, 2000.

    Article  PubMed  CAS  Google Scholar 

  26. Kawahito, S., K. Nakata, K. Nonaka, T. Sato, M. Yoshikawa, T. Takano, T. Maeda, J. Linneweber, S. Schulte-Eistrup, D. Flowers, J. Glueck, and Y. Nose. Analysis of the arterial blood pressure waveform using Fast Fourier Transform technique during left ventricular nonpulsatile assistance: In vitro study. Artif. Organs. 24:580–583, 2000.

    Article  PubMed  CAS  Google Scholar 

  27. Kim, H. K., H. S. Son, Y. H. Fang, P. S. Y. C. M. Hwang, and K. Sun. The effects of pulsatile flow upon renal tissue perfusion during cardiopulmonary bypass: a comparative study of pulsatile and nonpulsatile flow. ASAIO J. 51:30–36, 2005.

    Article  PubMed  Google Scholar 

  28. Kim, H. P., X. Wang, F. Galbiati, S. W. Ryter, and A. M. Choi. Caveolae compartmentalization of heme oxygenase-1 in endothelial cells. FASEB J. 18:1080–1089, 2004.

    Article  PubMed  CAS  Google Scholar 

  29. Koneru, P., and C. W. Leffler. Role of cGMP in carbon monoxide-induced cerebral vasodilation in piglets. Am. J. Physiol. Heart. Circ. Physiol. 286:H304–H309, 2004.

    Article  PubMed  CAS  Google Scholar 

  30. Ku, D. N., D. P. Giddens, D. J. Phillips, and D. E. Strandness Jr. Hemodynamics of the normal human carotid bifurcation: In vitro and in vivo studies. Ultrasound Med. Biol. 11:13–26, 1985.

    Article  PubMed  CAS  Google Scholar 

  31. Levonen, A. L., A. Landar, A. Ramachandran, E. K. Ceaser, D. A. Dickinson, G. Zanoni, J. D. Morrow, and V. M. Darley-Usmar. Cellular mechanisms of redox cell signalling: Role of cysteine modification in controlling antioxidant defences in response to electrophilic lipid oxidation products. Biochem. J. 378:373–382, 2004.

    Article  PubMed  CAS  Google Scholar 

  32. Li Volti, G., F. Seta, M. L. Schwartzman, A. Nasjletti, and N. G. Abraham. Heme oxygenase attenuates angiotensin II-mediated increase in cyclooxygenase-2 activity in human femoral endothelial cells. Hypertension 41:715–719, 2003.

    Article  PubMed  CAS  Google Scholar 

  33. Lieu, D. K., P. A. Pappone, and A. I. Barakat. Differential membrane potential and ion current responses to different types of shear stress in vascular endothelial cells. Am. J. Physiol. Cell Physiol. 286:C1367–C1375, 2004.

    Article  PubMed  CAS  Google Scholar 

  34. Long, Q., X. Y. Xu, K. V. Ramnarine, and P. Hoskins. Numerical investigation of physiologically realistic pulsatile flow through arterial stenosis. J. Biomech. 34:1229–1242, 2001.

    Article  PubMed  CAS  Google Scholar 

  35. Mattart, M., L. Mazzolai, C. Chambaz, D. Hayoz, H. R. Brunner, and P. Silacci. ET-1 and NOS III gene expression regulation by plaque-free and plaque-prone hemodynamic conditions. Biorheology 40:289–297, 2003.

    PubMed  CAS  Google Scholar 

  36. Mazzag, B. M., J. S. Tamaresis, and A. I. Barakat. A model for shear stress sensing and transmission in vascular endothelial cells. Biophys. J. 84:4087–4101, 2003.

    Article  PubMed  CAS  Google Scholar 

  37. McCormick, S. M., S. G. Eskin, L. V. McIntire, C. L. Teng, C. M. Lu, C. G. Russell, and K. K. Chittur. DNA microarray reveals changes in gene expression of shear stressed human umbilical vein endothelial cells. Proc. Natl. Acad. Sci. U.S.A. 98:8955–8960, 2001.

    Article  PubMed  CAS  Google Scholar 

  38. McCormick, S. M., P. A. Whitson, K. K. Wu, and L. V. McIntire. Shear stress differentially regulates PGHS-1 and PGHS-2 protein levels in human endothelial cells. Ann. Biomed. Eng. 28:824–833, 2000.

    Article  PubMed  CAS  Google Scholar 

  39. Mesana, T. G. Rotary blood pumps for cardiac assistance. Artif. Organs. 28:218–225, 2004.

    Article  PubMed  Google Scholar 

  40. Mills, C. J., I. T. Gabe, J. H. Gault, D. T. Mason, J. Ross Jr., E. Braunwald, and J. P. Shillingford. Pressure-flow relationships and vascular impedance in man. Cardiovasc. Res. 4:405–417, 1970.

    Article  PubMed  CAS  Google Scholar 

  41. Nguyen, K. T., S. G. Eskin, C. Patterson, M. S. Runge, and L. V. McIntire. Shear stress reduces protease activated receptor-1 expression in human endothelial cells. Ann. Biomed. Eng. 29:145–152, 2001.

    Article  PubMed  CAS  Google Scholar 

  42. Nishikawa, Y., D. W. Stepp, D. Merkus, D. Jones, and W. M. Chilian. In vivo role of heme oxygenase in ischemic coronary vasodilation. Am. J. Physiol. Heart Circ. Physiol. 286:H2296–H2304, 2004.

    Article  PubMed  CAS  Google Scholar 

  43. Passerini, A. G., D. C. Polacek, C. Shi, N. M. Francesco, E. Manduchi, G. R. Grant, W. F. Pritchard, S. Powell, G. Y. Chang, C. J. Stoeckert Jr., and P. F. Davies. Coexisting proinflammatory and antioxidative endothelial transcription profiles in a disturbed flow region of the adult porcine aorta. Proc. Natl. Acad. Sci. U.S.A. 101:2482–2487, 2004.

    Article  PubMed  CAS  Google Scholar 

  44. Perktold, K., and G. Rappitsch. Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. J. Biomech. 28:845–856, 1995.

    Article  PubMed  CAS  Google Scholar 

  45. Poulos, T. L. Structural and functional diversity in heme monooxygenases. Drug Metab. Dispos. 33:10–18, 2005.

    Article  PubMed  CAS  Google Scholar 

  46. Samijo, S. K., J. M. Willigers, P. J. Brands, R. Barkhuysen, R. S. Reneman, P. J. Kitslaar, and A. P. Hoeks. Reproducibility of shear rate and shear stress assessment by means of ultrasound in the common carotid artery of young human males and females. Ultrasound Med. Biol. 23:583–590, 1997.

    Article  PubMed  CAS  Google Scholar 

  47. Silacci, P., A. Desgeorges, L. Mazzolai, C. Chambaz, and D. Hayoz. Flow pulsatility is a critical determinant of oxidative stress in endothelial cells. Hypertension 38:1162–1166, 2001.

    Article  PubMed  CAS  Google Scholar 

  48. Simmons, D. L., R. M. Botting, and T. Hla. Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacol. Rev. 56:387–437, 2004.

    Article  PubMed  CAS  Google Scholar 

  49. Smith, W. L., D. L. DeWitt, and R. M. Garavito. Cyclooxygenases: structural, cellular, and molecular biology. Annu. Rev. Biochem. 69:145–182, 2000.

    Article  PubMed  CAS  Google Scholar 

  50. Soares, M. P., M. P. Seldon, I. P. Gregoire, T. Vassilevskaia, P. O. Berberat, J. Yu, T. Y. Tsui, and F. H. Bach. Heme oxygenase-1 modulates the expression of adhesion molecules associated with endothelial cell activation. J. Immunol. 172:3553–3563, 2004.

    PubMed  CAS  Google Scholar 

  51. Sorescu, G. P., H. Song, S. L. Tressel, J. Hwang, S. Dikalov, D. A. Smith, N. L. Boyd, M. O. Platt, B. Lassegue, K. K. Griendling, and H. Jo. Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress induces monocyte adhesion by stimulating reactive oxygen species production from a nox1-based NADPH oxidase. Circ. Res. 95:773–779, 2004.

    Article  PubMed  CAS  Google Scholar 

  52. Tai, S. C., G. B. Robb, and P. A. Marsden. Endothelial nitric oxide synthase: a new paradigm for gene regulation in the injured blood vessel. Arterioscler. Thromb. Vasc. Biol. 24:405–412, 2004.

    Article  PubMed  CAS  Google Scholar 

  53. Takatani, S. Beyond implantable first generation cardiac prostheses for treatment of end-stage cardiac patients with clinical results in a multicenter. Ann. Thorac. Cardiovasc. Surg. 8:253–263, 2002.

    PubMed  Google Scholar 

  54. Topper, J. N., J. Cai, D. Falb, and M. A. J. Gimbrone. Identification of vascular endothelial genes differentially responsive to fluid mechanical stimuli: Cyclooxygenase-2, manganese superoxide dismutase, and endothelial cell nitric oxide synthase are selectively up-regulated by steady laminar shear stress. Proc. Natl. Acad. Sci. U.S.A. 93:10417–10422, 1996.

    Article  PubMed  CAS  Google Scholar 

  55. VanderLaan, P. A., C. A. Reardon, and G. S. Getz. Site specificity of atherosclerosis: Site-selective responses to atherosclerotic modulators. Arterioscler. Thromb. Vasc. Biol. 24:12–22, 2004.

    Article  PubMed  CAS  Google Scholar 

  56. Wieselthaler, G. M., H. Schima, M. Hiesmayr, R. Pacher, G. Laufer, G. P. Noon, M. DeBakey, and E. Wolner. First clinical experience with the DeBakey VAD continuous-axial-flow pump for bridge to transplantation. Circulation. 101:356–359, 2000.

    PubMed  CAS  Google Scholar 

  57. Wittstein, I. S., W. Qiu, R. C. Ziegelstein, Q. Hu, and D. A. Kass. Opposite effects of pressurized steady versus pulsatile perfusion on vascular endothelial cell cytosolic pH: Role of tyrosine kinase and mitogen-activated protein kinase signaling. Circ. Res. 86:1230–1236, 2000.

    PubMed  CAS  Google Scholar 

  58. Womersley, J. R. Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. 127:553–563, 1955.

    PubMed  CAS  Google Scholar 

  59. Wunder, C., R. W. Brock, S. D. McCarter, A. Bihari, K. Harris, O. Eichelbronner, and R. F. Potter. Inhibition of haem oxygenase activity increases leukocyte accumulation in the liver following limb ischaemia-reperfusion in mice. J. Physiol. 540:1013–1021, 2002.

    Article  PubMed  CAS  Google Scholar 

  60. Yet, S. F., M. D. Layne, X. Liu, Y. H. Chen, B. Ith, N. E. Sibinga, and M. A. Perrella. Absence of heme oxygenase-1 exacerbates atherosclerotic lesion formation and vascular remodeling. FASEB J. 17:1759–1761, 2003.

    PubMed  CAS  Google Scholar 

  61. Younis, H. F., M. R. Kaazempur-Mofrad, R. C. Chan, A. G. Isasi, D. P. Hinton, A. H. Chau, L. A. Kim, and R. D. Kamm. Hemodynamics and wall mechanics in human carotid bifurcation and its consequences for atherogenesis: investigation of inter-individual variation. Biomech. Model Mechanobiol. 3:17–32, 2004.

    Article  PubMed  CAS  Google Scholar 

  62. Zhao, S. Z., B. Ariff, Q. Long, A. D. Hughes, S. A. Thom, A. V. Stanton, and X. Y. Xu. Inter-individual variations in wall shear stress and mechanical stress distributions at the carotid artery bifurcation of healthy humans. J. Biomech. 35:1367–1377, 2002.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by HL-18672 from the NIH. We thank Drs. George Sorescu and Hanjoong Jo of Emory University School of Medicine for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry V. McIntire.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yee, A., Sakurai, Y., Eskin, S.G. et al. A Validated System for Simulating Common Carotid Arterial Flow In Vitro: Alteration of Endothelial Cell Response. Ann Biomed Eng 34, 593–604 (2006). https://doi.org/10.1007/s10439-006-9078-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-006-9078-8

Keywords

Navigation