Skip to main content
Log in

Nitric oxide upregulation of caspase-8 mRNA expression in lung endothelial cells: role of JAK2/STAT-1 signaling

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

We recently reported that nitric oxide (NO) modulates expression of multiple genes associated with apoptotic pathways, including expression of caspase-8. The objective of the present study is to determine whether the NO-induced expression of the caspase-8 gene is regulated via signal transducers and activators of transcription-1 (STAT-1) signaling. The confluent monolayers of pulmonary artery endothelial cells (PAEC) were incubated with or without (control) 1 mM NOC-18, a NO donor, at 37°C for 0–24 h. In some experiments PAEC were pretreated with a Janus kinase (JAK-2) inhibitor, AG490 (20 μM). Exposure of PAEC to NO-increased relative levels of caspase-8 mRNA as determined using quantitative real time PCR. Relative levels of phosphorylated STAT-1 at Serine (Ser)-727, but not total STAT-1 expression in NO-exposed cells, were upregulated significantly compared to control cells. AG490 attenuated NO-induced phosphorylation of STAT-1 at Ser 727 and expression of caspase-8 mRNA, suggesting JAK2 plays a role in the induction of caspase-8 mRNA. The promoter of caspase-8 has four γ-activated sequence (GAS) and two interferon-stimulated response element (ISRE) transcription factor-binding sites. NO enhanced the STAT-1 binding activity to GAS/ISRE. Suppression of STAT-1 expression attenuated NO-induced elevation of caspase-8 mRNA. These studies demonstrate that a NO-dependent increase in caspase-8 mRNA levels is associated with phosphorylation of STAT-1 at Ser-727 and STAT1 binding to the caspase-8 promoter in cultured PAEC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Shen YH, Wang XL, Wilcken DE (1998) Nitric oxide induces and inhibits apoptosis through different pathways. FEBS Lett 433:125–131

    Article  PubMed  CAS  Google Scholar 

  2. Santore MT, McClintock DS, Lee VY et al (2002) Nitric oxide induces and inhibits apoptosis through different pathways. Am J Physiol Lung Cell Mol Physiol 282:727–734

    Google Scholar 

  3. Lee VY, McClintock DS, Santore MT et al (2002) Hypoxia sensitizes cells to nitric oxide-induced apoptosis. J Biol Chem 277:16067–16074

    Article  PubMed  CAS  Google Scholar 

  4. Muhl H, Sandau K, Brune B et al (1996) Nitric oxide donors induce apoptosis in glomerular mesangial cells, epithelial cells and endothelial cells. Eur J Pharmacol 317:137–149

    Article  PubMed  CAS  Google Scholar 

  5. Walford GA, Moussignac RL, Scribner AW et al (2004) Hypoxia potentiates nitric oxide-mediated apoptosis in endothelial cells via peroxynitrite-induced activation of mitochondria-dependent and -independent pathways. J Biol Chem 279:4425–32

    Article  PubMed  CAS  Google Scholar 

  6. Li L, Zhang J, Block ER et al (2004) Nitric oxide-modulated marker gene expression of signal transduction pathways in lung endothelial cells. Nitric Oxide 11:290–297

    Article  PubMed  CAS  Google Scholar 

  7. Du C, Guan Q, Diao H et al (2006) Nitric oxide induces apoptosis in renal tubular epithelial cells through activation of caspase-8. Am J Physiol Renal Physiol 290:F1044–F1054

    Article  PubMed  CAS  Google Scholar 

  8. Ruiz-Ruiz C, Ruiz de Almodovar C, Rodriguez A et al (2004) The up-regulation of human caspase-8 by interferon-gamma in breast tumor cells requires the induction and action of the transcription factor interferon regulatory factor-1. J BiolChem 279:19712–19720

    CAS  Google Scholar 

  9. Refaeli Y, Van Parijs L, Alexander SI et al (2002) Interferon gamma is required for activation-induced death of T lymphocytes. J Exp Med 196:999–1005

    Article  PubMed  CAS  Google Scholar 

  10. Durbin JE, Hackenmiller R, Simon MC et al (1996) Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell 84:443–450

    Article  PubMed  CAS  Google Scholar 

  11. Kishimoto T, Taga T, Akira S (1994) Cytokine signal transduction. Cell 76:253–262

    Article  PubMed  CAS  Google Scholar 

  12. Igaz P, Toth S, Falus A (2001) Biological and clinical significance of the JAK-STAT pathway; lessons from knockout mice. Inflamm Res 50:435–441

    Article  PubMed  CAS  Google Scholar 

  13. Kovarik P, Mangold M, Ramsauer K et al (2001) Specificity of signaling by STAT1 depends on SH2 and C-terminal domains that regulate Ser727 phosphorylation differentially affecting specific target gene expression. EMBO J 20:91–100

    Article  PubMed  CAS  Google Scholar 

  14. Wen Z, Zhong Z, Darnell JE Jr (1995) Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation. Cell 82:241–250

    Article  PubMed  CAS  Google Scholar 

  15. Yang X, Merchant MS, Romero ME et al (2003) Induction of caspase 8 by interferon gamma renders some neuroblastoma (NB) cells sensitive to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) but reveals that a lack of membrane TR1/TR2 also contributes to TRAIL resistance in NB. Cancer Res 63:1122–1129

    PubMed  CAS  Google Scholar 

  16. Maziere C, Dantin F, Dubois F et al (2000) Biphasic effect of UVA radiation on STAT1 activity and tyrosine phosphorylation in cultured human keratinocytes. Free Radic Biol Med 28:1430–1437

    Article  PubMed  CAS  Google Scholar 

  17. Stephanou A, Scarabelli TM, Brar BK et al (2001) Induction of apoptosis and Fas receptor/Fas ligand expression by ischemia/reperfusion in cardiac myocytes requires serine 727 of the STAT-1 transcription factor but not tyrosine 701. J Biol Chem 276:28340–28347

    Article  PubMed  CAS  Google Scholar 

  18. Zhang J, Li YD, Patel JM et al (1998) Thioredoxin overexpression prevents NO-induced reduction of NO synthase activity in lung endothelial cells. Am J Physiol Lung Cell Mol Physiol 275:L288–L293

    CAS  Google Scholar 

  19. Zhang J, Xia SL, Block ER et al (2002) NO upregulation of a cyclic nucleotide-gated channel contributes to calcium elevation in endothelial cells. Am J Physiol Cell Physiol 283:C1080–C1089

    PubMed  CAS  Google Scholar 

  20. Bal-Price A, Brown GC (2000) Nitric-oxide-induced necrosis and apoptosis in PC12 cells mediated by mitochondria. J Neurochem 75:1455–1464

    Article  PubMed  CAS  Google Scholar 

  21. Aarskog NK, Vedeler CA (2000) Real-time quantitative polymerase chain reaction. A new method that detects both the peripheral myelin protein22 duplication in Charcot-Marie-Tooth type 1A disease and the peripheral myelin protein 22 deletion in hereditary neuropathy with liability to pressure palsies. Hum Genet 107:494–498

    Article  PubMed  CAS  Google Scholar 

  22. Kovarik P, Stoiber D, Eyers PA et al (1999) Stress-induced phosphorylation of STAT1 at Ser727 requires p38 mitogen-activated protein kinase whereas IFN-gamma uses a different signaling pathway. Proc Natl Acad Sci USA 96:13956–13961

    Article  PubMed  CAS  Google Scholar 

  23. Mandoro TH, Shafer BC, Vostal JG (1997) Peroxynitrite-induced tyrosine nitration and phosphorylation in human platelets. Free Radical Biol Med 22:1055–1063

    Article  Google Scholar 

  24. Gow AJ, Duran D, Malcolm S et al (1996) Effects of peroxynitrite-induced protein modifications on tyrosine phosphorylation and degradation. FEBS Lett 385: 63–66

    Article  PubMed  CAS  Google Scholar 

  25. Kong SK, Yim MB, Stadtman ER et al (1996) Peroxynitrite disables the tyrosine phosphorylation regulatory mechanism: lymphocyte-specific tyrosine kinase fails to phosphorylate nitrated cdc2 (6–20) NH2 peptide. Proc Natl Acad Sci USA 93: 3377–3382

    Article  PubMed  CAS  Google Scholar 

  26. Brito C, Naviliat M, Tiscornia AC et al (1999) Peroxynitrite inhibits T lymphocyte activation and proliferation by promoting impairment of tyrosine phosphorylation and peroxynitrite-driven apoptotic death. J Immuno 162:3356–3366

    CAS  Google Scholar 

  27. Sareila O, Korhonen R, Karpanniemi O et al (2006) JAK inhibitors AG-490 and WHI-P154 decrease IFN-gamma-induced iNOS expression and NO production in macrophages. Mediators Inflamm 2:16161–16170

    Google Scholar 

  28. Alblas J, Honing H, deLavalette CR et al (2005) Signal regulatory protein alpha ligation induces macrophage nitric oxide production through JAK/STAT- and phosphatidylinositol 3-kinase/Rac1/NAPDH oxidase/H2O2-dependent pathways. Mol Cell Biol 25:7181–7192

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Ms. Gina. Eubanks and Mrs. Di-hua He for technician assistance and Mr. Bert Herrera for tissue culture assistance. This work was supported in part by the Medical Research Service of the Department of Veterans Affairs (JMP, ERB), by NIH grant HL-67886 (JMP), and by a Scientist Development Award from the American Heart Association of Florida (JZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jawaharlal M. Patel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Zhang, J., Jin, B. et al. Nitric oxide upregulation of caspase-8 mRNA expression in lung endothelial cells: role of JAK2/STAT-1 signaling. Mol Cell Biochem 305, 71–77 (2007). https://doi.org/10.1007/s11010-007-9529-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-007-9529-z

Keywords

Navigation