Skip to main content
Log in

Induction of apoptosis by quercetin: different response of human chronic myeloid (K562) and acute lymphoblastic (HSB-2) leukemia cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

This work shows that 25 μM quercetin caused a marked inhibition of K562 cells growth together with a mild cytotoxicity, while HSB-2 cells were practically unaffected. Moreover, quercetin induced caspase-3 and cytochrome c-dependent apoptosis almost exclusively in the former cell line. Exposure of K562 cells to quercetin caused also a significant increase of cells in G2/M phase that reached the maximum peak at 24 h (4-fold with respect to the basal value). The major sensitivity exhibited by K562 cells was only in part imputable to their higher glutathione content, as compared to HSB-2 cells, thus confirming previous reports describing the formation of intracellular quercetin–thiol toxic adducts in cells exposed to the flavonoid. In fact, after induction of intracellular glutathione increase we detected in both cell lines a significant rise of apoptotic cells, again more marked in K562 cells. By contrast, glutathione-depleted cells, failed to show a decrease of apoptosis in both cell lines, thus contradicting our previous findings and literature data. Since the yet unresolved question about the anti-oxidant or the pro-oxidant capacity of quercetin, we investigated which of these two properties worked in our experimental model. Interestingly, not only quercetin did not produce reactive oxygen species but also prevented their formation, as observed in cells exposed to the oxidizing agent ter-butylhydroperoxide, acting as an efficient oxygen radicals scavenger. This result indicates that quercetin exhibited, in these cell lines, anti-oxidant more than pro-oxidant ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ac-DEVD-AMC:

Acetyl-Asp-Glu-Val-Asp-aminomethylcoumarin

BSO:

buthionine-l-sulphoximine

DCFH-DA:

2′,7′-dichlorofluorescein diacetate

DEM:

diethyl maleate

ECL:

enhanced chemiluminescence

NAC:

N-acetyl-l-cysteine

ROS:

reactive oxygen species

t-BHP:

tert-butylhydroperoxide

References

  1. Cook NC, Samman S: Flavonoids. Chemistry, metabolism, cardioprotective effects, and dietary sources J Nutr Biochem 7:66–76, 1996

    Article  CAS  Google Scholar 

  2. Goldberg DM, Tsang E, Karumanchiri A, Diamandis E, Soleas G, Ng E: Method to assay the concentrations of phenolic constituents of biological interest in wines Anal Chem 68:1688–1694, 1996

    Article  PubMed  CAS  Google Scholar 

  3. Manach C, Williamson G, Morand C, Scalbert A, Remesy C: Bioavailability and bioefficacy of polyphenols in humans. I Review of 97 bioavailability studies Am J Clin Nutr 81:230S–242S, 2005

    PubMed  CAS  Google Scholar 

  4. Ross JA, Kasum CM: Dietary flavonoids: bioavailability, metabolic effects, and safety Annu Rev Nutr 22:19–34, 2002

    Article  PubMed  CAS  Google Scholar 

  5. Murota K, Terao J: Antioxidative flavonoid quercetin: implication of its intestinal absorption and metabolism Arch Biochem Biophys 417:12–17, 2003

    Article  PubMed  CAS  Google Scholar 

  6. Spencer JPE, Kuhnle GGC, Williams RJ, Rice-Evans C: Intracellular metabolism and bioactivity of quercetin and its in vivo metabolites Biochem J 372:173–181, 2003

    Article  PubMed  CAS  Google Scholar 

  7. Awad HM, Boersma MG, Boeren S, van der Woude H, van Zanden J, van Bladeren PJ, Vervoort J, Rietjens IM: Identification of o-quinone/quinone methide metabolites of quercetin in a cellular in vitro system FEBS Lett 520:30–34, 2002

    Article  PubMed  CAS  Google Scholar 

  8. Awad HM, Boersma MG, Boeren S, van Bladeren PJ, Vervoort J, Rietjens IM: Quenching of quercetin quinone/quinone methides by different thiolate scavangers: stability and reversibility of conjugate formation Chem Res Toxicol 16:822–831, 2003

    PubMed  CAS  Google Scholar 

  9. Otake Y, Walle T: Oxidation of the flavonoids galangin and kaempferide by human liver microsomes and CYP1A1, CYP1A2, and CYP2C9 Drug Metab Dispos 30:103–105, 2002

    Article  PubMed  Google Scholar 

  10. Otake Y, Hsieh F, Walle T: Glucuronidation versus oxidation of the flavonoid galangin by human liver microsomes and hepatocytes Drug Metab Dispos 30:576–581, 2002

    Article  PubMed  CAS  Google Scholar 

  11. Jakubowicz-Gil J, Paduch R, Piersiak T, Lowniak K, Gawron A, Kandefer-Szerszen M: The effect of quercetin on pro-apoptotic activity of cisplatin in HeLa cells Biochem Pharmacol 69:1343–1350, 2005

    Article  PubMed  CAS  Google Scholar 

  12. Russo M, Palumbo R, Tedesco I, Mazzarella G, Russo P, Iacomino G, Russo GL: Quercetin and anti-CD95 (Fas/Apo1) enhance apoptosis in HPB-ALL cell line FEBS Lett 462:322–328, 1999

    Article  PubMed  CAS  Google Scholar 

  13. Wang IK, Lin-Shiau SY, Lin JK: Induction of apoptosis by apigenin and related flavonoids through cytochrome c release and activation of caspase-9 and caspase-3 in leukemia HL-60 cells Eur J Cancer 35:1517–1525, 1999

    Article  PubMed  CAS  Google Scholar 

  14. Kuo SM: Antiproliferative potency of structurally distinct dietary flavonoids on human colon cancer cells Cancer Lett 110:41–48, 1996

    Article  PubMed  CAS  Google Scholar 

  15. McGahon AJ, Martin SJ, Bissonnette RP, Mahboubi A, Shi Y, Mogil RJ, Nishioka WK, Green DR: The end of and the (cell) line: methods for the study of apoptosis in vitro. (Review). Methods Cell Biol 46:153–185, 1995

    Article  PubMed  CAS  Google Scholar 

  16. Köhlex C, Orrenius S, Zhivatovsky B: Evaluation of caspase activity in apoptotic cells J Immunol Methods 265:97–110, 2002

    Article  Google Scholar 

  17. Anderson ME: Determination of glutathione and glutathione disulfide in biological samples Methods Enzymol 113:548–555, 1985

    PubMed  CAS  Google Scholar 

  18. Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding Anal Biochem 72:248–254, 1976

    Article  PubMed  CAS  Google Scholar 

  19. Carlberg I, Mannervik B: Purification and characterization of flavoenzyme glutathione reductase from rat liver J Biol Chem 250:5475–5480, 1975

    PubMed  CAS  Google Scholar 

  20. Paglia BE, Valentine WN: Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase J Lab Clin Med 1:158–169, 1967

    Google Scholar 

  21. Habig WH, Pabot MJ, Jarkoby WB: Glutathione S-transferase. The first enzymatic step in mercapturic acid formation J Biol Chem 249:7130–7139, 1974

    PubMed  CAS  Google Scholar 

  22. LeBel CP, Ishiropoulos H, Bondy SC: Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive species formation and oxidative stress Chem Res Toxicol 5:227–231, 1992

    Article  PubMed  CAS  Google Scholar 

  23. Bedi A, Barber JP, Bedi GC, el-Deiry WS, Sidranski D, Vala MS, Akhtar AJ, Hilton J, Jones RJ: BCR-ABL-mediated inhibition of apoptosis with delay of G2/M transition after DNA damage: a mechanism of resistance to multiple anticancer agents Blood 86:1148–1158, 1995

    PubMed  CAS  Google Scholar 

  24. Cortez D, Kadlec L, Pendergast AM: Structural and signaling requirements for BCR-ABL-mediated transformation and inhibition of apoptosis Mol Cell Biol 15:5531–5541, 1995

    PubMed  CAS  Google Scholar 

  25. Riordan FA, Bravery CA, Mengubas K, Ray N, Borthwick NJ, Akbar AN, Hart SM, Hoffbrand AV, Metha AB, Wickremasinghe RG: Herbimycin A accelerates the induction of apoptosis following etoposide treatment or gamma-irradiation of BCR/ABL-positive leukemia cells Oncogene 16:1533–1542, 1998

    Article  PubMed  CAS  Google Scholar 

  26. Knijn A, Brisdelli F, Ferretti A, Iorio E, Marcheggiani D, Bozzi A: Metabolic alterations in K562 cells exposed to taxol and tyrphostin AG957: 1H NMR and biochemical studies Cell Biol Int 29:890–897, 2005

    Article  PubMed  CAS  Google Scholar 

  27. Scalbert A, Williamson G: Dietary intake and bioavailability of polyphenols J Nutr 130:2073S–2085S, 2000

    PubMed  CAS  Google Scholar 

  28. Williamson G, Manach C: Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 bioavailable intervention studies Am J Clin Nutr 81:243S–255S, 2005

    PubMed  CAS  Google Scholar 

  29. Hsu H, Xiong J, Goeddel DV: The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation Cell 88:495–504, 1995

    Article  Google Scholar 

  30. Raff M: Cell suicide for beginners Nature 396:119–122, 1998

    Article  PubMed  CAS  Google Scholar 

  31. Crompton M: The mitochondrial permeability transition pore and its role in cell death Biochem J 341:233–249, 1999

    Article  PubMed  CAS  Google Scholar 

  32. Kroemer G, Reed JC: Mitochondrial control of cell death Nat Med 6:513–519, 2000

    Article  PubMed  CAS  Google Scholar 

  33. Galati G, Teng S, Moridani MY, Chan TS, O’Brien PJ: Cancer chemoprevention and apoptosis mechanisms induced by dietary polyphenolics Drug Metabol Drug Interact 17:311–349, 2000

    PubMed  CAS  Google Scholar 

  34. Williams RJ, Spencer JPE, Rice-Evans C: Flavonoids: antioxidants or signalling molecules? Free Radic Biol Med 36:838–849, 2004

    Article  PubMed  CAS  Google Scholar 

  35. Park C, So H-S, Shin C-H, Baek S-H, Moon B-S, Shin S-H, Lee HS, Lee DW, Park R: Quercetin protects the hydrogen peroxide-induced apoptosis via inhibition of mitochondrial dysfunction in H9c2 cardiomyoblast cells Biochem Pharmacol 66:1287–1295, 2003

    Article  PubMed  CAS  Google Scholar 

  36. Cotgreave IA, Gerdes RG: Recent trends in glutathione biochemistry-glutathione–protein interactions: a molecular link between oxidative stress and cell proliferation? Biochem Biophys Res Commun 242:1–9, 1998

    Article  PubMed  CAS  Google Scholar 

  37. Van den Dobbelsteen DJ, Nobel CS, Schlegel J, Cotgreave IA, Orrenius S, Slater AF: Rapid and specific efflux of reduced glutathione during apoptosis induced by anti-Fas/APO-1 antibody J Biol Chem 271:15420–15427, 1996

    Article  PubMed  Google Scholar 

  38. Voehringer DW, McConkey DJ, McDonnell TJ, Brisbay S, Meyn RE: Bcl-2 expression causes redistribution of glutathione to the nucleus Proc Natl Acad Sci USA 95:2956–2960, 1998

    Article  PubMed  CAS  Google Scholar 

  39. Luzi C, Brisdelli F, Cinque B, Cifone G, Bozzi A: Differential sensitivity to resveratrol-induced apoptosis of chronic myeloid (K562) and acute lymphoblastic (HSB-2) leukemia cells Biochem Pharmacol 68:2019–2030, 2004

    Article  PubMed  CAS  Google Scholar 

  40. Middleton Jr E, Kandaswami C: Potential health promoting properties of citrus flavonoids Food Technol 48:115–119, 1994

    CAS  Google Scholar 

  41. Hakimuddin F, Paliyath G, Meckling K: Selective cytotoxicity of a red grape wine flavonoid fraction against MCF-7 cells Breast Cancer Res Treat 85:65–79, 2004

    Article  PubMed  CAS  Google Scholar 

  42. Di Carlo G, Mascolo N, Ice AA, Capasso F: Flavonoids: old and new aspects of a class of natural therapeutic drugs Life Sci 65:337–353, 1999

    Article  PubMed  CAS  Google Scholar 

  43. Duthie GG, Duthie SJ, Kyle JAM: Plant polyphenols in cancer and heart disease: implications as nutritional antioxidants Nutr Res Rev 13:79–106, 2000

    Article  CAS  Google Scholar 

  44. Mertens-Talcott SU, Talcott ST, Percival SS: Low concentrations of quercetin and ellagic acid synergistically influence proliferation, cytotoxicity and apoptosis in MOLT-4 human leukemia cells J Nutr 133:2669–2674, 2003

    PubMed  CAS  Google Scholar 

  45. Lee TJ, Kim OH, Kim YH, Lim JH, Kim S, Park JW, Kwon TK: Quercetin arrests G2/M phase and induces caspase-dependent cell death in U937 cells. Cancer Lett 240: 234–242, 2006

    Google Scholar 

  46. Richter M, Ebermann R, Marian B: Quercetin-induced apoptosis in colorectal tumor cells: possible role of EGF receptor signaling Nutr Cancer 34:88–99, 1999

    Article  PubMed  CAS  Google Scholar 

  47. Yoshida M, Yamamoto M, Nikaido T: Quercetin arrests human leukemic T-cells in late G1 phase of the cell cycle Cancer Res 52:6676–6681, 1992

    PubMed  CAS  Google Scholar 

  48. Radtke J, Linseisen J, Wolfram G: Fasting plasma concentrations of selected flavonoids as markers of their ordinary dietary intake Eur J Nutr 41:203–209, 2002

    Article  PubMed  CAS  Google Scholar 

  49. Erlund I, Marniemi J, Hakala P, Alfthan G, Meririnne E, Aro A: Consumption of black currants, lingonberries and bilberries increases serum quercetin concentrations Eur J Clin Nutr 57:37–42, 2003

    Article  PubMed  CAS  Google Scholar 

  50. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD: The release of cytochrome c from mitochondria: a primary site for bcl-2 regulation of apoptosis Science 275:1132–1136, 1997

    Article  PubMed  CAS  Google Scholar 

  51. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X: Cytochrome c and dATP-dependent formation of Apaf-1/Caspase-9 complex initiates an apoptotic protease cascade Cell 91:479–489, 1997

    Article  PubMed  CAS  Google Scholar 

  52. Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng TI, Jones DP, Wang X: Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked Science 275:1129–1132, 1997

    Article  PubMed  CAS  Google Scholar 

  53. Antonsson B, Martinou JC: The Bcl-2 protein family Exp Cell Res 256:50–57, 2000

    Article  PubMed  CAS  Google Scholar 

  54. Qanungo S, Wang M, Nieminen AL: N-acetyl-l-cysteine enhances apoptosis through inhibition of Nuclear Factor-kB in hypoxic murine embryonic fibroblasts J Biol Chem 279:50455–50464, 2004

    Article  PubMed  CAS  Google Scholar 

  55. Chen Y, Zheng R, Jia Z, Ju Y: Flavonoids as superoxide scavengers and antioxidants Free Radic Biol Med 9:19–21, 1990

    Article  PubMed  Google Scholar 

  56. Torel J, Cillard J, Cillard P: Antioxidant activity of flavonoids and reactivity with peroxy radical Phytochemistry 25:383–385, 1986

    Article  CAS  Google Scholar 

  57. Husain SR, Cillard J, Cillard P: Hydroxyl radical scavenging activity of flavonoids Phytochemistry 26:2489–2491, 1987

    Article  CAS  Google Scholar 

  58. Sestili P, Guidarelli A, Dacha M, Cantoni O: Quercetin prevents DNA single strand breakage and cytotoxicity caused by tert-butylhydroperoxide: free radical scavenging versus iron chelating mechanism Free Radic Biol Med 25:196–200, 1998

    Article  PubMed  CAS  Google Scholar 

  59. Negre-Salvayre A, Salvayre R: Quercetin prevents the cytotoxicity of oxidised LDL on lymphoid cell lines Free Radic Biol Med 12:101–106, 1992

    Article  PubMed  CAS  Google Scholar 

  60. Duthie SJ, Collins AR, Duthie GG, Dobson VL: Quercetin and myricetin protect against hydrogen peroxide induced DNA damage (strand breaks and oxidised pyrimidines) in human lymphocytes Mutat Res 393:223–231, 1997

    PubMed  CAS  Google Scholar 

  61. Skaper SD, Fabris M, Ferrar V, Carbonare MD, Leon A: Quercetin protects cutaneous tissue-associated cell types including sensory neurons from oxidative stress induced by glutathione depletion: cooperative effects of ascorbic acid Free Radic Biol Med 22:669–678, 1997

    Article  PubMed  CAS  Google Scholar 

  62. Kim WK, Bang MH, Kim ES, Kang NE, Jung KC, Cho HJ, Park JH: Quercetin decreases the expression of ErbB2 and ErbB3 proteins in HT-29 human colon cancer cells J Nutr Biochem 16:155–162, 2005

    Article  PubMed  CAS  Google Scholar 

  63. Chen D, Daniel KG, Chen MS, Kuhn DJ, Landis-Piwowar KR, Dou QP: Dietary flavonoids as proteasome inhibitors and apoptosis inducers in human leukaemia cells Biochem Pharmacol 69:1421–1432, 2005

    Article  PubMed  CAS  Google Scholar 

  64. Dorta DJ, Pigoso AA, Mingatto FE, Rodrigues T, Prado IMR, Helena AFC, Uyemura SA, Santos AC, Curti C: The interaction of flavonoids with mitochondria: effects on energetic processes Chem Biol Interact 152:67–78, 2005

    Article  PubMed  CAS  Google Scholar 

  65. Manach C, Morand C, Crespy V, Demingne C, Texier O, Regerat F, Remesy C: Quercetin is recovered in human plasma as conjugated derivatives which retain antioxidant properties FEBS Lett 426:331–336, 1998

    Article  PubMed  CAS  Google Scholar 

  66. Boulton DW, Walle UK, Walle T: Fate of the flavonoid quercetin in human cell lines: chemical instability and metabolism J Pharm Pharmacol 51:353–359, 1999

    Article  PubMed  CAS  Google Scholar 

  67. Long LH, Clement MV, Halliwell B: Artifacts in cell culture: rapid generation of hydrogen peroxide on addition of (−)-epigallocatechin, (−)-epigallocatechin gallate, (+)-catechin, and quercetin to commonly used cell culture media Biochem Biophys Res Commun 273:50–53, 2000

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was partially supported by the “Ministero dell’Università e della Ricerca Scientifica” (PRIN 2004) to AB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Argante Bozzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brisdelli, F., Coccia, C., Cinque, B. et al. Induction of apoptosis by quercetin: different response of human chronic myeloid (K562) and acute lymphoblastic (HSB-2) leukemia cells. Mol Cell Biochem 296, 137–149 (2007). https://doi.org/10.1007/s11010-006-9307-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-006-9307-3

Keywords

Navigation