Skip to main content

Advertisement

Log in

Antiatherogenic and radioprotective role of folic acid in whole body γ-irradiated mice

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Free radical mediated oxidative damage is one of the prime factors for atherogenic changes in humans. We have shown that the folic acid administration reduced the risk of the atherogenic factors induced by γ -radiation. Folic acid administration prevented the radiation induced increase in the plasma lipoprotein lipase activity and also prevented the radiation-induced increase in the hepatic cholesterol and triglycerides levels. These results indicate the role of folic acid as an antiatherogenic agent. Further, we also report the radioprotective property of folic acid as demonstrated by reduction in the radiation induced membrane damage as measured by lipid peroxidation products and DNA damage, which was measured by alkaline comet assay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FA:

Folic acid

TBARS:

2-thiobarbituric acid like reactive substances

TC:

total cholesterol

TG:

total triglycerides

HDL-C:

high density lipoprotein cholesterol

LDL-C:

very low density lipoprotein cholesterol and low density lipoprotein cholesterol

References

  1. Wang C: Biochemical role of folate in cellular metabolism. In: Folates in Health and Disease. Ed. Bailey LB pp. 23–45 Marcel Decker; New York 1995

    Google Scholar 

  2. Kesavan V, Noronha, JM: An ATPase dependent radiosensitive acidic microclimate essential for intestinal folate transport. J Physiol (London) 280: 1–7, 1978

    CAS  Google Scholar 

  3. Kesavan V, Pote MS, Anand R, Viswanathan G: Variations in folate metabolism gamma irradiated mice. Pteridines 11: 64–70, 2000

    CAS  Google Scholar 

  4. Kesavan V, Pote MS, Batra V, Viswanathan G: Increased folate catabolism following total body γ-irradiation in mice. J Radiat Res 44: 141–144, 2003

    Article  PubMed  CAS  Google Scholar 

  5. Davles KIA, Quintanilha AT, Brooks GA, Packer L: Free radicals and tissue damage produced by exercise. Biochem Biophys Res Commun 107: 1198–1205, 1982

    Article  Google Scholar 

  6. Armstrong D, Sohal RS, Cutler RG, Slater TF: Free radicals in molecular biology, aging and disease. New York: Raven 1984

    Google Scholar 

  7. Basu AK, Marnet LJ: Unequivocal demonstration that malondialdehyde is mutagen. Carcinogenesis 4: 331–333, 1984

    Google Scholar 

  8. Chow CK: Nutritional influence on cellular antioxidant defense systems. Amer J Clin Nutr 32: 1066–1081, 1978

    Google Scholar 

  9. Sinclair AJ, Barnett AH, Lunec J: Free radicals and antioxidant systems in health and disease. Br J Hosp Med 43: 334–344, 1990

    PubMed  CAS  Google Scholar 

  10. Noronha JM, Kesavan V, Viswanathan G: Antiatherogenic effect of folic acid in alcoholism Pteridines, 3: 143–144, 1992

    CAS  Google Scholar 

  11. Pote MS, Noronha JM, Kesavan V: An antoatherogenic role for folic acid in Experimental diabetes. J Clin Bichem Nutr 18: 157–164, 1995

    CAS  Google Scholar 

  12. Nair CKK, Parida DK, Nomura T: Radioprotectors in Radiotherapy. J Radiat Res 42: 21–37, 2001

    Article  PubMed  CAS  Google Scholar 

  13. Shihabi ZK, Bishop C: Simplified turbidimetric assay for lipase activity. Clin Chem 17: 1150–1153, 1971

    PubMed  CAS  Google Scholar 

  14. Povoa H, Marcondes N, Frenandes L, Vicente NM: Folic acid and lipoprotein Lipase from aorta and blood plasma of atherosclerotic rats. Biomed Biochem Acta 43: 241–244, 1984

    CAS  Google Scholar 

  15. Allain CC, Poon LS, Chan CSG, Richmond W, Fu PC: Enzymatic determination of total serum cholesterol. Clin Chem 20: 470–475, 1974

    PubMed  CAS  Google Scholar 

  16. Grove TH: Effect of reagent pH on determination of high density lipoprotein cholesterol by precipitation with sodium phosphotungstate-magnesium. Clin Chem 25: 560–564, 1979

    PubMed  CAS  Google Scholar 

  17. Bucolo G, David H: Quantitative determination of serum triglycerides by the use of enzymes. Clin Chem 19: 476–482 1973

    PubMed  CAS  Google Scholar 

  18. Buege AJ, Aust SD: Microsomal lipid peroxidation. Methods Enzymol 30: 302–310, 1978

    Article  Google Scholar 

  19. Lowry OH, Rosenblum NJ, Farr AL, Randall J: Protein measurement with folin phenol reagent. J Biol Chem 193: 265–275, 1951

    PubMed  CAS  Google Scholar 

  20. Singh NP: Microgels for estimation of DNA strand breaks, DNA protein crosslinks and apoptosis. Mutat Res 455: 111–127, 2000

    PubMed  CAS  Google Scholar 

  21. Gandhi NM, Gopalaswamy UV, Nair CKK: Radiation protection by Disulfiram: Protection of membrane and DNA in vitro and in vivo against γ-radiation. J Radiat Res 44: 255–259, 2003

    Article  PubMed  CAS  Google Scholar 

  22. Konca K, Lankoff A, Banasik A, Lisowska H, Kuszewski T, Gozdz S, Koza Z, Wojcik A: A cross platform public domain PC image analysis program for the comet assay. Mutat Res 534: 15–20, 2003

    PubMed  CAS  Google Scholar 

  23. Gordon T, Castelli WP, Hjorrtland MC, Kenneel WB, Dawber TR: High density lipoprotein as protective factor against coronary heart disease: The Framingham study. Am J Med 62: 707–714, 1977

    Article  PubMed  CAS  Google Scholar 

  24. Chaialo PP, Pliushch GI: Pathogenic role of free-radical damage in radiation Induced atherrosclerosis. Fiziol Zh 47: 107–115, 2001

    PubMed  CAS  Google Scholar 

  25. McCully KS: Homocysteine theory of arteriosclerosis: Development and current status in Atherosclerosis reviews Vol 11, (ed.) By Gotto AM Jr., and Paoletti R, Raven Press New York, pp.157–246

  26. Kang SS, Wong PWK, Norusis M: Homocysteine due to folate deficiency. Metabolism 36: 458–462 1987

    Article  PubMed  CAS  Google Scholar 

  27. Wilcken DEL, Dudman NPB, Tyrell PA, Robertson MR: Folic acid lowers elevated plasma homocysteine in chronic renal insufficiency. Possible implications for vascular disease. Metabolism 37: 697–701, 1988

    Article  PubMed  CAS  Google Scholar 

  28. Malinlinow MR. Hyperhomocyst (e) inenemia: A common and easily reversible risk factor in occlusive atherosclerosis. Circulation 81: 2004–2006, 1990

    Google Scholar 

  29. Pancharuniti N, Lewis CA, Sauberlich HE, Perkins LL, Go RCP, Alvarez JD, Maculo M: Action RT, Cooperland RB, Cousins AL, Gore TB, Cornwell PE, Roseman JM: Plasma homocyst(e)ine and vitamin B12 concentrations and risk for early onset of coronary artery-disease. Am J Clin 59: 940–948, 1994

    CAS  Google Scholar 

  30. Joshi R, Adhikari S, Patro BS, Chattopadhyay S, Mukherjee T: Free radical scavenging behavior of folic acid: evidence for possible antioxidant activity. Free Radiat Biol Med 30: 1390–1399, 2001

    Article  CAS  Google Scholar 

  31. Rezk BM, Guido RMM, Wim JF, Vijgh VD, Bast A: Tetrahydrofolate and 5-methyltetrahydrofolate are folates with high antioxidant activity, identification of the antioxidant pharmacophore FEBS Lett. 555: 601–605, 2003

    Article  PubMed  CAS  Google Scholar 

  32. Kelly P, McPartlin J, Scott J: A combined high-performance liquid chromatographic-microbiological assay for serum folic acid. Anal Biochem 238: 179– 183, 1996

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaushala Prasad Mishra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pote, M.S., Gandhi, N.M. & Mishra, K.P. Antiatherogenic and radioprotective role of folic acid in whole body γ-irradiated mice. Mol Cell Biochem 292, 19–25 (2006). https://doi.org/10.1007/s11010-006-9135-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-006-9135-5

Keywords

Navigation