Skip to main content

Advertisement

Log in

Effect of bitter gourd and spent turmeric on constituents of glycosaminoglycans in different tissues in streptozotocin induced diabetic rats

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Diet is now one of the well established means in the management of diabetes. Bitter gourd and spent turmeric at 10% level were tested for their efficacy on glycosaminoglycan metabolism in various tissues viz., liver, spleen, lungs, heart and testis in control, diabetic and treated rats. The glycosaminoglycans (GAGs) were isolated from defatted and dried tissues. The contents of sulfated GAGs decreased in all the tissues and the decrease was more prominent in heart and testis. In the isolated GAGs, contents of total sugar, amino sugar, uronic acid and sulfate were studied. Decrease in total sugar content was maximum in testis. Amino sugar content decreased considerably in testis (38%) and lungs (15%). The content of uronic acid also decreased in testis (33%) besides heart (29%) and liver (25%). Sulfate groups in GAGs perform pivotal functions in many biological events and decrease in sulfate content was significant in heart (40%), testis (37%) and liver (37%). GAGs profile on the cellulose acetate electrophoresis revealed that heparan sulfate (HS), hyaluronic acid (HA) and chondroitin sulfate/dermatan sulfate (CS/DS) were present in liver, spleen and lungs. HS, CS were present in heart, DS/CS was observed in testis. The observed beneficial effects in GAGs metabolism during diabetes may be due to the presence of high amounts of dietary fibres present in bitter gourd and spent turmeric, besides, possible presence of bioactive compounds in one or both of them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roden L: Structure and metabolism of connective tissue proteoglycans, In: W.J. Lennarz, The biochemistry of glycoproteins and proteoglycans, Plenum Publishing Corp., New York, pp 267–274, 1980

    Google Scholar 

  2. Raab G, Klagsbrun M: Heparin-binding EGF-like growth factor, Biochim. Biophys Acta 1333: 179–199, 1997

    Google Scholar 

  3. Casu B, Oreste P, Torri G, Zoppetti G, Choay J, Lormeau JC, Petitou M, Sinay P: The structure of heparin oligosaccharide fragments with high anti-(factor Xa) activity containing the minimal antithrombin III-binding sequence. Chemical and 13C nuclear magnetic resonance studies. Biochem J 197: 599–609, 1981

    CAS  Google Scholar 

  4. Vuillermoz B, Khoruzhenko A, Dnodrio MF, Ramont L, Venteo L, Perreau C, Antonicelli F, Maquart FX, Wegrowski Y: The small leucine-rich proteoglycans lumican inhibits melanoma progression. Exp Cell Res 296: 294–306, 2004

    Article  PubMed  CAS  Google Scholar 

  5. Radhakrishnamurthy B, Neil E, Berenson JGS: Heterogeneity of heparan sulfate chains in a proteoglycan from bovine lung. Biochim Biophys Acta 802: 314–320, 1984

    PubMed  CAS  Google Scholar 

  6. Ashour M, Najjar W, Al-Katan K, Essa M, Al-Motrafi AA, Al-Saddique A, El-Bakry A: Intra-operative heparin release during lung surgery. Eur J Cardithoral Surg 25: 839–843, 2004

    Article  Google Scholar 

  7. Kirk JE: Anti-coagulant activity of human arterial mucopolysaccharides. Nature 184: 369–370, 1959

    Article  PubMed  CAS  Google Scholar 

  8. Izuka K, Murata K: Inhibitory effects of human aortic and venous acid glycosaminoglycans on thrombus formation. Atherosclerosis 16: 217–224, 1972

    Article  PubMed  CAS  Google Scholar 

  9. Murata K, Nakazava K, Hamai A: Distribution of acidic glycosaminoglycans in the intima, media and adventitia of bovine aorta and their anticoagulant properties. Atherosclerosis 21: 93–103, 1975

    Article  PubMed  CAS  Google Scholar 

  10. Ts'ao CH, Eisenstein R, Schumacher B: Effect of an aortic proteoglycan on platelet aggregation and thrombin time: plasma requirement and active moieties. Proc Soc Exp Biol Med 156: 162–167, 1997

    Google Scholar 

  11. Munakata H, Hsu CC, Kodama C, Aikawa J, Sakurada M, Ototani N, Isemura M, Yosizawa Z, Hayashi N: Isolation of dermatan sulfate with high heparin cofactor II-mediated thrombin-inhibitory activity from porcine spleen. Biochem Biophys Acta 262: 8926–8933, 1987

    Google Scholar 

  12. Plaas AHK, West LA, Wong-palms S, Nelson FR: Glycosaminoglycan sulfation in human osteoarthritis disease related alterations at the non-reducing terminal of chondroitin and dermatan sulfate. J Biol Chem 273: 12642–12649, 1998

    Article  PubMed  CAS  Google Scholar 

  13. Theocharis AD, Karamanos NK, Papageorgakopopoulou N, Tsiganos CP, Theocharis DA: Isolation and characterization of matrix proteoglycans from human nasal cartilage. Compositional and structural comparison between normal and sclerotic tissues. Biochim Biophys Acta 1569: 117–126, 2002

    PubMed  CAS  Google Scholar 

  14. Laros CD: The pathogenesis of lung emphysema. A hypothesis. Respiration 29: 442–457, 1972

    PubMed  CAS  Google Scholar 

  15. Wusteman FS, Gold C, Wagner J C: Glycosaminoglycans and calcification in the lesions of progressive massive fibrosis and in pleural plaques. Ann Rev Resp Dis 106: 116–118, 1972

    CAS  Google Scholar 

  16. Catini C, Gheri G, Miliani A: Glycosaminoglycans in the spleen of normal humans and in the spleen of subjects with chronic myeloid leukemia. Nouv Rev Fr Hematol 26: 309–315, 1984

    PubMed  CAS  Google Scholar 

  17. Giacco R, Parillo M, Rivellese AA, Lasorella G, Giacco A, Depiscopo L, Riccardi G: Long-term dietary treatment with increased amounts of fiber-rich low-glycemic index natural foods improves blood glucose control and reduces the number of hypoglycemic events in type—I diabetic patients. Diabetes Care 23: 1461–1466, 2000

    Article  PubMed  CAS  Google Scholar 

  18. Bourquin LD, Titgemeyer EC, Garleb KA, Fahey GC: Fermentation of various dietary fiber sources by human fecal bacteria. Nut Res 16: 1119–1131, 1996

    Article  Google Scholar 

  19. Calabresse C, Venturini L, Ronco G, Villa P, Chomienne C, Velpomme T: Butyric acid and its monosaccharide ester induce apoptosis in the HL-60 cell line. Biochem Biophys Res Commun 195: 31–38, 1993

    Article  PubMed  CAS  Google Scholar 

  20. Nandini CD, Sambaiah K, Salimath PV: Dietary fibers ameliorate decreased synthesis of heparan sulphate in streptozotocin induced diabetic rats. J Nutr Biochem 14: 203–210, 2003

    Article  PubMed  CAS  Google Scholar 

  21. Shah S, Lance P, Smith TJ, Berenson SN, Cohen SA, Horvath PJ, Lau TTY, Baumann H: n-Butyrate reduces the expression of β-galactoside α-2,6 sialyl transferase in HepG2cells. J Biol Chem 267: 10652–10658, 1992

    PubMed  CAS  Google Scholar 

  22. Jocobsson KG, Reisenfeld J, Linodahl U: Biosynthesis of heparan. Effect of N-butyrate on mast cells. J Biol Chem 260: 12154–12159, 1986

    Google Scholar 

  23. Leatherdale BA, Panesar RK, Singh G, Atkins TW, Bailery CJ, Bignell AHC: Improvements in glucose tolerance due to Momordica charantia (Karela). British J Med 282: 1823–1824, 1981

    Article  CAS  Google Scholar 

  24. Platel K, Srinivasan K: Effect of dietary intake of freeze-dried bitter gourd (Momordica charantia) in streptozotocin induced diabetic rats. Nahrung 39: 262–268, 1995

    Article  PubMed  CAS  Google Scholar 

  25. Bieri JG, Stoewsand GS, Briggs GM, Phillips RW, Woolard JC, Knapka JJ: Report of the American institute of nutrition ad hoc committee on standards for nutritional studies. J Nutr 107: 1340–1348, 1997

    Google Scholar 

  26. Hatch GM, Cao SG, Angel A: Decrease in cardiac phosphatidyl glycerol in streptozotocin induced diabetic rats does not affect cardiolipin biosynthesis: evidence for distant pools of phosphatidyl glycerol in the heart. Biochem J 306: 759–764, 1995

    PubMed  CAS  Google Scholar 

  27. Hugget ASG, Nixon DA: Use of glucose oxidase, peroxidase and O-dianisidine in the determination of blood and urinary glucose. Lancet 273: 368–370, 1957

    Article  Google Scholar 

  28. Miller GL: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31: 426–428, 1959

    Article  CAS  Google Scholar 

  29. Mckelvy JF, Lee YC: Microheterogeneity of the carbohydrate group Aspergillus oryzae α-amylase. Arch Biochem Biophys 132: 99–110, 1969

    Article  PubMed  CAS  Google Scholar 

  30. Ludoweig J, Benmaman JD: Colorimetric differentiation of hexosamines. Anal Biochem 19: 80–88, 1967

    Article  Google Scholar 

  31. Dische ZA: New specific colour reaction of hexuronic acid. J Biol Chem 167: 189–198, 1947

    CAS  Google Scholar 

  32. Dodgson KS: Determination of inorganic sulphate in studies on enzymic and non-enzymic hydrolyses of carbohydrates and other sulfate esters. Biochem J 78: 312–319, 1961

    PubMed  CAS  Google Scholar 

  33. Farndale RW, Buttle DJ, Barrett AJ: Improved quantification and determination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochem Biophys Acta 883: 173–177, 1986

    PubMed  CAS  Google Scholar 

  34. Scott JE: Aliphatic ammonium salts in the assay of acidic polysaccharides from tissues. Methods Biochem Anal 8: 145–197, 1960

    Article  PubMed  CAS  Google Scholar 

  35. Allalouf D, Ber A, Sharon N: Acid mucopolysaccharides in rat kidney. Biochem Biophys Acta 83: 278–287, 1964

    PubMed  CAS  Google Scholar 

  36. Srinvasan SR, Dolan P, Radhakrishnamurthy, Pargaonkar PS, Berenson CS: Lipoprtein-Acid mucopolysaccharide complexes of human atheroschlerotic lesions. Biochem Biophys Acta 388: 58–70, 1975

    Google Scholar 

  37. Snedecor GW, Cochran WG: In, Statistical methods, 6th eds., Iowa State Univ. Press, Ames, pp 258–298, 1976

    Google Scholar 

  38. Rathi AN, Vishwanathan A, Shanmugasundaram KR: Studies on protein-bound polysaccharide components and glycosaminoglycans in experimental diabetes — effect of Gymnema sylvestre. R Br Ind J Exp Biol 19: 715–721, 1981

    CAS  Google Scholar 

  39. Deepa SS, Umehara Y, Higashiyama S, Itoh N, Sugahara K: Specific molecular interactions of over sulfated chondroitin sulfate E with various heparin-binding growth factors. J Biol Chem 277: 43707–43716, 2002

    Article  PubMed  CAS  Google Scholar 

  40. Kanwar YS, Farquhar MS: Anionic sites in the glomerular basement membrane. J Cell Biol l 8: 137–150, 1970

    Google Scholar 

  41. Tamsma JT, Van den Born J, Bruijn JA, Assmann KJ, Weenin JJ, Berden JH, Assmann KJ, Weening JJ, Berden JH, Wieslander J, Schrama E, Hermans J, Verkamp JH, et al., Expression of glomerular extracellular matrix components in human diabetic nephropathy: decrease of heparan sulphate in the glomerular basement membrane. Diabetologia 37: 313–320, 1994

    Article  PubMed  CAS  Google Scholar 

  42. Scandling JD, Myers BD: Glomerular size-selectivity and microalbuminuria in early diabetic glomerular disease. Kidney Intl 41: 840–846, 1992

    Article  CAS  Google Scholar 

  43. Kjellen L, Bielefeld D, Hook M: Reduced sulfation of heparan sulfate in experimentally diabetic rats. Diabetes 32: 337–342, 1983

    Article  PubMed  CAS  Google Scholar 

  44. Mohanam S, Bose SM: Influence of streptozotocin and alloxan-induced diabetes on the metabolism of glycosaminoglycans. Acta Diabetol Lat 21: 203–210, 1984

    Article  PubMed  CAS  Google Scholar 

  45. Vijayagopal P, Srinivasan SR, Radhakrishnamurthry B, Berenson GS: Interaction of serum lipoproteins and proteoglycans from bovine aorta. J Biol Chem 256: 8234–8241, 1981

    PubMed  CAS  Google Scholar 

  46. Reddi AS: Glomerular and urinary glycosaminoglycans in diabetic rats. Clin Chim Acta 189: 211–220, 1990

    Article  PubMed  CAS  Google Scholar 

  47. Carlos PA, Yara MM: Structural differences of dermatan sulfates from different origins. Carbohydr Res 147: 87–100, 1986

    Article  Google Scholar 

  48. Van den born J, Van K AA, Hill S, Bakker MA, Berden JH: Vessel wall heparan sulfate and transcapillary passage of albumin in experimental diabetes in the rat. Nephrol Dial Transplant 2: 27–31, 1997

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Salimath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, G.S., Vijayalakshmi, B. & Salimath, P.V. Effect of bitter gourd and spent turmeric on constituents of glycosaminoglycans in different tissues in streptozotocin induced diabetic rats. Mol Cell Biochem 286, 53–58 (2006). https://doi.org/10.1007/s11010-005-9086-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-005-9086-2

Keywords

Navigation