Skip to main content
Log in

Dissociation and unfolding of inducible nitric oxide synthase oxygenase domain identifies structural role of tetrahydrobiopterin in modulating the heme environment

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The oxygenase domain of the inducible nitric oxide synthase, Δ65 iNOSox is a dimer that binds heme, L-Arginine (L-Arg), and tetrahydrobiopterin (H4B) and is the site for NO synthesis. The role of H4B in iNOS structure-function is complex and its exact structural role is presently unknown. The present paper provides a simple mechanistic account of interaction of the cofactor tetrahydrobiopterin (H4B) with the bacterially expressed Δ65 iNOSox protein. Transverse urea gradient gel electrophoresis studies indicated the presence of different conformers in the cofactor-incubated and cofactor-free Δ65 iNOSox protein. Dynamic Light Scattering (DLS) studies of cofactor-incubated and cofactor-free Δ65 iNOSox protein also showed two distinct populations of two different diameter ranges. Cofactor tetrahydrobiopterin (H4B) shifted one population, with higher diameter, to the lower diameter ranges indicating conformational changes. The additional role played by the cofactor is to elevate the heme retaining capacity even in presence of denaturing stress. Together, these findings confirm that the H4B is essential in modulating the iNOS heme environment and the protein environment in the dimeric iNOS oxygenase domain. (Mol Cell Boichem xxx: 1–10, 2005)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

NO:

nitric oxide

nNOS:

neuronal nitric oxide synthase

iNOS:

inducible nitric oxide synthase

eNOS:

endothelial nitric oxide synthase L-Arg, L-Arginine

H4B:

(6R)-5,6,7,8-tetrahydro-Lbiopterin

NADPH:

reduced β-nicotinamide adenine dinucleotide

NOS FL:

full-length NOS subunit

ox:

oxygenase subunit

References

  1. Ignarro LJ, (ed.): Nitric oxide, Biology and Pathobiology. Aademic Press, San Diego, 2000

    Google Scholar 

  2. Furchgott RF: Nitric oxide: a unique endogenous signaling molecule in vascular biology. Biosci Rep 19: 235–251, 1999

    Article  PubMed  CAS  Google Scholar 

  3. Nathan CJ: Inducible nitric oxide synthase: what difference does it make. J Clin Invest 100: 2417–2423, 1997

    Article  PubMed  CAS  Google Scholar 

  4. Michel T, Feron OJ: Nitric oxide synthases: which, where, how and why. J Clin Invest 100: 2146–2152, 1997

    PubMed  CAS  Google Scholar 

  5. Pfeiffer S, Mayer B, Hemmens B: Nitric oxide: chemical puzzles posed by a biological messenger. Angew Chem Int Ed Engl 38: 1715–1731, 1999

    Article  CAS  Google Scholar 

  6. Griffith OW, Stuehr DJ: Nitric oxide synthases: properties and catalytic mechanism. Annu Rev Physiol 57: 707–736, 1995

    Article  PubMed  CAS  Google Scholar 

  7. Marletta MA, Hurshman AR, Rusch KM: Catalysis by nitric oxide synthase. Curr Opin Chem Biol 2: 656–663, 1997

    Article  Google Scholar 

  8. Roman LJ, Martasek P, Masters BS: Intrinsic and extrinsic modulation of nitric oxide synthase activity. Chem Rev 102: 1179–1190, 2002

    Article  PubMed  CAS  Google Scholar 

  9. Ghosh S, Gachhui R, Crooks C, Wu C, Lisanti MP, Stuehr DJ: Interaction between Caveolin-1 and the reductase domain of endothelial nitric-oxide synthase. J Biol Chem 273: 22267–22271, 1998

    Article  PubMed  CAS  Google Scholar 

  10. Stuehr DJ, Ikeda-Saito M: Spectral characterization of brain and macrophage nitric oxide synthases. Cytochrome P-450-like heme-proteins that contain a flavin semiquinone radical. J Biol Chem 267: 20547–20550, 1992

    PubMed  CAS  Google Scholar 

  11. Ghosh S, Wolan D, Adak S, Crane BR, Kwon NS, Tainer JA, Getzoff ED, Stuehr DJ: Mutational analysis of the tetrahydrobiopterin binding site in inducible nitric oxide synthase. J Biol Chem 274: 24100–24112, 1999

    Article  PubMed  CAS  Google Scholar 

  12. Crane BR, Arvai AS, Ghosh DK, Wu C, Getzoff ED, Stuehr DJ, Tainer JA: Structure of nitric oxide synthase oxygenase dimer with pterin and substrate. Science 279: 2121–2126, 1998

    Article  PubMed  CAS  Google Scholar 

  13. Ghosh DK, Abu-Soud HM, Stuehr DJ: Domains of macrophage NO synthase have divergent roles in forming and stabilizing the active dimeric enzyme. Biochemistry 35: 1444–1449, 1996

    Article  PubMed  CAS  Google Scholar 

  14. Craig DH, Chapman SK, Daff S: Calmodulin activates electron transfer through neuronal nitric-oxide synthase reductase domain by releasing an NADPH-dependent conformational lock. J Biol Chem 277: 33987–33994, 2002

    Article  PubMed  CAS  Google Scholar 

  15. Cho HJ, Martin E, Xie Q, Sassa S, Nathan C: Inducible nitric oxide synthase: identification of amino acid residues essential for dimerization and binding of tetrahydrobiopterin. Proc Natl Acad Sci U S A 92: 11514–11518, 1995

    Article  PubMed  CAS  Google Scholar 

  16. Crane BR, Arvai AS, Gachhui R, Wu C, Ghosh DK, Getzoff ED, Stuehr DJ, Tainer JA: The structure of nitric oxide synthase oxygenase domain and inhibitor complexes. Science 278: 425–431, 1997

    Article  PubMed  CAS  Google Scholar 

  17. Raman CS, Li H, Martasek P, Kral V, Masters BS, Poulos TL: Crystal structure of constitutive endothelial nitric oxide synthase: a paradigm for pterin function involving a novel metal center. Cell 95: 939–950, 1998

    Article  PubMed  CAS  Google Scholar 

  18. Fischmann TO, Hruza A, Niu XD, Fossetta JD, Lunn CA, Dolphin E, Prongay AJ, Reichert P, Lundell DJ, Narula SK, Weber PC: Structural characterization of nitric oxide synthase isoforms reveals sriking active-site conservation. Nat Struct Biol 6: 233–242, 1999

    Article  PubMed  CAS  Google Scholar 

  19. Rodriguez-Crespo I, Gerber NC, Ortiz de Montellano PR: Endothelial nitric-oxide synthase. Expression in Escherichia coli, spectroscopic characterization, and role of tetrahydrobiopterin in dimer formation. J Biol Chem 271: 11462–11467, 1996

    Article  PubMed  CAS  Google Scholar 

  20. Rodriguez-Crespo I, Moenne-Loccoz P, Loehr TM, Ortiz de Montellano PR: Endothelial nitric oxide synthase: Modulations of the distal heme site produced by progressive N-terminal deletions. Biochemistry 36: 8530–8538, 1997

    Article  PubMed  CAS  Google Scholar 

  21. Caroll LJ, Xu Y, Thrall SH, Martin BM, Dunaway-Mariano D: Substrate binding domains in pyruvate phosphate dikinase. Biochemistry 33: 1134–1142, 1994

    Article  Google Scholar 

  22. Stuehr DJ: Structure-function aspect in the nitric oxide synthases. Annu Rev pharmacol Toxicol 37: 339–359, 1997

    Article  PubMed  CAS  Google Scholar 

  23. Stuehr DJ: Mammalian nitric oxide synthases. Biochim Biophys Acta Bioenerg 1411: 217–230, 1999

    Article  CAS  Google Scholar 

  24. Chen PF, Tsai AL, Berka V, Wu KK: Endothelial nitric-oxide synthase. Evidence for bidomain structure and successful reconstitution of catalytic activity from two separate domains generated by a baculovirus expression system. J Biol Chem 271: 14631–14635, 1996

    Article  PubMed  CAS  Google Scholar 

  25. Ghosh DK, Wu C, Pitters E, Moloney M, Werner ER, Meyer B, Stuehr DJ: Characterization of the inducible nitric oxide synthase oxygenase domain identifies a 49 amino acid segment required for subunit dimerization and tetrahydrobiopterin interaction. Biochemistry 36: 10609–10619, 1997

    Article  PubMed  CAS  Google Scholar 

  26. Abu-Soud HM, Loftus M, Stuehr DJ: Subunit dissociation and unfolding of macrophage NO synthase: relationship between enzyme structure, prosthetic group binding, and catalytic function. Biochemistry 34(1995): 11167–11175, 1995

    Article  PubMed  CAS  Google Scholar 

  27. Hemmens B, Goessler W, Schimidt K, Mayer B: Role of bound zinc in dimer stabilization but not enzyme activity of neuronal nitric-oxide synthase. J Biol Chem 275: 35786–35791, 2000

    Article  PubMed  CAS  Google Scholar 

  28. Venema RC, Ju H, Zou R, Ryan JW, Venema VJ: Subunit interactions of endothelial nitric-oxide synthase. Comparisons to the neuronal and inducible nitric-oxide synthase isoforms, J Biol Chem 272: 1276–1282, 1997

    Article  PubMed  CAS  Google Scholar 

  29. Panda K, Rosenfeld RJ, Ghosh S, Meade AL, Getzoff ED, Stuehr DJ: Distinct dimer interaction and regulation in nitric oxide synthase type I, II and III. J Biol Chem 277: 31020–31030, 2002

    Article  PubMed  CAS  Google Scholar 

  30. Tzeng E, Billiar TR, Robbins PD, Loftus M, Stuehr DJ: Expression of human inducible nitric oxide synthase in a tetrahydrobiopterin (H4B)-deficient cell line: H4B promotes assembly of enzyme subunits into an active dimer. Proc Natl Acad Sci USA 92: 11771–11775, 1995

    Article  PubMed  CAS  Google Scholar 

  31. Klatt P, Schmidt K, Lehner D, Glatter O, Bachinger HP, Meyer B: structural analysis of porcine brain nitric oxide synthase reveals a role for tetrahydrobiopterin and L-arginine in the formation of an SDS-resistance dimmer. EMBO J 14: 3687–3695, 1995

    PubMed  CAS  Google Scholar 

  32. Panda K, Ghosh S, Stuehr DJ: Calmodulin activates intersubunit electron transfer in the neuronal nitric-oxide synthase dimer. J Biol Chem 276: 23356, 2001

    Google Scholar 

  33. Klatt P, Pfeiffer S, List BM, Lehner D, Otto G, Bachinger HP, Werner ER, Schmidt K, Mayer B: Characterization of Heme-deficient Neuronal Nitric-oxide Synthase Reveals a Role for Heme in Subunit Dimerization and Binding of the Amino Acid Substrate and Tetrahydrobiopterin. J Biol Chem 271: 7336–7342, 1996

    Article  PubMed  CAS  Google Scholar 

  34. Sengupta R, Sahoo R, Mukherjee S, Regulski M, Tully T, Stuehr DJ, Ghosh S: Characterization of Drosophila nitric oxide synthase: a biochemical study. Biochem Biophys Res Com 306: 590–597, 2003

    Article  PubMed  CAS  Google Scholar 

  35. Ghosh DK, Stuehr DJ: Reconstitution of the second step in NO synthesis using the isolated oxygenase and reductase domains of macrophage NO synthase. Biochemistry 34: 801–807, 1995

    Article  PubMed  CAS  Google Scholar 

  36. Lowe PN, Smith D, Stammers DK, Rivorose-Moreno V, Moncada S, Charles I: A. Boyhan, Identification of the domains of neuronal nitric oxide synthase by limited proteolysis. Biochem J 314: 55–62, 1996

    PubMed  CAS  Google Scholar 

  37. Abu-Soud HM, Wang J, Rousseau DL, Fukuto JM, Ignarro LJ, Stuehr DJ: Neuronal nitric oxide synthase self-inactivates by forming a ferrous-nitrosyl complex during aerobic catalysis. J Biol Chem 270: 22997–23006, 1995

    Article  PubMed  CAS  Google Scholar 

  38. Siddhanta U, Wu C, Abu-Saud HM, Zhang J, Ghosh DK, Stuehr DJ: Heme iron reduction and catalysis by a nitric oxide synthase heterodimer containing one reductase and two oxygenase domains. J Biol Chem 271: 7309–7312, 1996

    Article  PubMed  CAS  Google Scholar 

  39. Pufahl PA, Wishonok JS, Marletta MA: Hydrogen peroxide-supported oxidation of NG-hydroxy-L-arginine by nitric oxide synthase. Biochemistry 34: 1930–1941, 1995

    Article  PubMed  CAS  Google Scholar 

  40. Adak S, Wang Q, Stuehr DJ: Arginine conversion to nitroxide by tetrahydrobiopterin-free neuronal nitric-oxide synthase. J Biol Chem 275: 33554–33561, 2000

    Article  PubMed  CAS  Google Scholar 

  41. Creighton TE, Shortle D: Electrophoretic characterization of the denatured states of staphylococcal nuclease. J Mol Biol 242: 670–682, 1994

    Article  PubMed  CAS  Google Scholar 

  42. Goldenburg DP: Protein structure: a practical approach. IRL press, London, 1997

    Google Scholar 

  43. McMillan K, Masters BS: Optical difference spectrophotometry as a probe of rat brain nitric oxide synthase heme-substrate interaction. Biochemistry 32: 9875–9880, 1993

    Article  PubMed  CAS  Google Scholar 

  44. Creighton TE: Electrophoretic analysis of the unfolding of proteins by urea. J Mol Biol 129: 235–264, 1979

    Article  PubMed  CAS  Google Scholar 

  45. Crane BR, Rosenfeld RJ, Arvai AS, Ghosh DK, Ghosh S, Tainer JA, Stuehr DJ, Getzoff ED: N-terminal domain swapping and metal ion binding in nitric oxide synthase dimerization. EMBO J 18: 6271–6281, 1999

    Article  PubMed  CAS  Google Scholar 

  46. Li D, Stuehr DJ, Yeh SR, Rousseau DL: Heme distortion modulated by ligand-protein interactions in inducible nitric oxide synthase. J Biol Chem 279: 26489–26499, 2004

    Article  PubMed  CAS  Google Scholar 

  47. Li H, Raman CS, Glaser CB, Blasko E, Young TA, Parkinson JF, Whitlow M, Poulos TL: Crystal structures of zinc-free and -bound heme domain of human inducible nitric-oxide synthase. Implications for dimer stability and comparison with endothelial nitric-oxide synthase. J Biol Chem 274: 21276–21284, 1999

    Article  PubMed  CAS  Google Scholar 

  48. Morris Jr. SM, Kepka-Lenhart D, Chen LC: Differential regulation of arginases and inducible nitric oxide synthase in murine macrophage cells. Am J Physiol 275: E740–E747, 1998

    PubMed  Google Scholar 

  49. Que LG, Kantrow SP, Jenkinson CP, Piantadosi CA, Huang YC: Induction of arginase isoforms in the lung during hyperoxia. Am J Physiol 275: L96–L102, 1998

    PubMed  CAS  Google Scholar 

  50. Geller DA, Di Silvio M, Billiar TR, Hatakeyama K: GTP cyclohydrolase I is coinduced in hepatocytes stimulated to produce nitric oxide. Biochem Biophys Res Commun 276: 633–641, 2000

    Article  PubMed  CAS  Google Scholar 

  51. Sakai N, Kaufman S, Milstein S: Tetrahydrobiopterin is required for cytokine-induced nitric oxide production in a murine macrophage cell line (RAW 264). Mol Pharmacol 43: 6–10, 1993

    PubMed  CAS  Google Scholar 

  52. Wilson DK, Rafferty SP, Konermann L: Kinetic unfolding mechanism of the nitric oxide synthase domain determined by time-resolved electrospray mass spectrometry. Biochemistry 44: 2276–2283, 2005

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Ghosh.

Additional information

Supported by Calcutta University Research Grants.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sengupta, R., Sahoo, R., Ray, S.S. et al. Dissociation and unfolding of inducible nitric oxide synthase oxygenase domain identifies structural role of tetrahydrobiopterin in modulating the heme environment. Mol Cell Biochem 284, 117–126 (2006). https://doi.org/10.1007/s11010-005-9027-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-005-9027-0

Keywords

Navigation