Skip to main content

Methods for Biophysical Characterization of SznF, a Member of the Heme-Oxygenase-Like Diiron Oxidase/Oxygenase Superfamily

  • Protocol
  • First Online:
Oxygen Sensing

Abstract

Nonheme diiron enzymes harness the chemical potential of oxygen to catalyze challenging reactions in biology. In their resting state, these enzymes have a diferrous cofactor that is coordinated by histidine and carboxylate ligands. Upon exposure to oxygen, the cofactor oxidizes to its diferric state forming a peroxo- adduct, capable of catalyzing a wide range of oxidative chemistries such as desaturation and heteroatom oxidation. Despite their versatility and prowess, an emerging subset of nonheme diiron enzymes has inherent cofactor instability making them resistant to structural characterization. This feature is widespread among members of the heme-oxygenase-like diiron oxidase/oxygenase (HDO) superfamily. HDOs have a flexible core structure that remodels upon metal binding. Although ~9600 HDOs have been unearthed, few have undergone functional characterization to date. In this chapter, we describe the methods that have been used to characterize the HDO N-oxygenase, SznF. We demonstrate the overexpression and purification of apo-SznF and methodology specifically designed to aid in obtaining an X-ray structure of holo-SznF. We also describe the characterization of the transient SznF-peroxo-Fe(III)2 complex by stopped-flow absorption and Mössbauer spectroscopies. These studies provide the framework for the characterization of new members of the HDO superfamily.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nordlund P, Eklund H (1995) Di-iron-carboxylate proteins. Curr Opin Struct Biol 5(6):758–766

    Article  CAS  PubMed  Google Scholar 

  2. Stubbe J (1991) Dinuclear non-heme iron centers: structure and function. Current Opinion in Structural Biology 1(5):788–795. https://doi.org/10.1016/0959-440X(91)90180-2

    Article  CAS  Google Scholar 

  3. Jasniewski AJ, Que L Jr (2018) Dioxygen activation by nonheme diiron enzymes: diverse dioxygen adducts, high-valent intermediates, and related model complexes. Chem Rev 118(5):2554–2592. https://doi.org/10.1021/acs.chemrev.7b00457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rajakovich LJ, Zhang B, McBride MJ, Boal AK, Krebs C, Bollinger JM Jr (2020) Emerging structural and functional diversity in proteins with dioxygen reactive dinuclear transition metal cofactors. In: Liu H-W, Begley TP (eds) Comprehensive natural products III. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-12-409547-2.14864-4

    Chapter  Google Scholar 

  5. Schuller DJ, Wilks A, Ortiz de Montellano PR, Poulos TL (1999) Crystal structure of human heme oxygenase-1. Nat Struct Biol 6(9):860–867. https://doi.org/10.1038/12319

    Article  CAS  PubMed  Google Scholar 

  6. McBride MJ, Pope SR, Hu K, Okafor CD, Balskus EP, Bollinger JM Jr, Boal AK (2021) Structure and assembly of the diiron cofactor in the heme-oxygenase-like domain of the N-nitrosourea-producing enzyme SznF. Proc Natl Acad Sci U S A 118(4). https://doi.org/10.1073/pnas.2015931118

  7. Schwarzenbacher R, Stenner-Liewen F, Liewen H, Robinson H, Yuan H, Bossy-Wetzel E, Reed JC, Liddington RC (2004) Structure of the Chlamydia protein CADD reveals a redox enzyme that modulates host cell apoptosis. J Biol Chem 279(28):29320–29324. https://doi.org/10.1074/jbc.M401268200

    Article  CAS  PubMed  Google Scholar 

  8. Stenner-Liewen F, Liewen H, Zapata JM, Pawlowski K, Godzik A, Reed JC (2002) CADD, a chlamydia protein that interacts with death receptors. J Biol Chem 277(12):9633–9636. https://doi.org/10.1074/jbc.C100693200

    Article  CAS  PubMed  Google Scholar 

  9. Rui Z, Li X, Zhu X, Liu J, Domigan B, Barr I, Cate JH, Zhang W (2014) Microbial biosynthesis of medium-chain 1-alkenes by a nonheme iron oxidase. Proc Natl Acad Sci U S A 111(51):18237–18242. https://doi.org/10.1073/pnas.1419701112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Manley OM, Fan R, Guo Y, Makris TM (2019) Oxidative decarboxylase UndA utilizes a dinuclear iron cofactor. J Am Chem Soc 141(22):8684–8688. https://doi.org/10.1021/jacs.9b02545

    Article  CAS  PubMed  Google Scholar 

  11. Zhang B, Rajakovich LJ, Van Cura D, Blaesi EJ, Mitchell AJ, Tysoe CR, Zhu X, Streit BR, Rui Z, Zhang W, Boal AK, Krebs C, Bollinger JM Jr (2019) Substrate-triggered formation of a peroxo-Fe2(III/III) intermediate during fatty acid decarboxylation by UndA. J Am Chem Soc 141(37):14510–14514. https://doi.org/10.1021/jacs.9b06093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Marchand JA, Neugebauer ME, Ing MC, Lin CI, Pelton JG, Chang MCY (2019) Discovery of a pathway for terminal-alkyne amino acid biosynthesis. Nature 567(7748):420–424. https://doi.org/10.1038/s41586-019-1020-y

    Article  CAS  PubMed  Google Scholar 

  13. Manley OM, Tang H, Xue S, Guo Y, W-c C, Makris TM (2021) BesC initiates C–C cleavage through a substrate-triggered and reactive diferric-peroxo intermediate. Journal of the American Chemical Society 143(50):21416–21424. https://doi.org/10.1021/jacs.1c11109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McBride MJ, Nair MA, Sil D, Slater JW, Neugebauer M, Chang MCY, Boal AK, Krebs C, Bollinger JM (2022) A substrate-triggered μ-peroxodiiron(III) intermediate in the 4-chloro-L-lysine-fragmenting heme-oxygenase-like diiron oxidase (HDO) BesC: substrate dissociation from, and C4 targeting by, the intermediate. bioRxiv 61(8):689–702. https://doi.org/10.1101/2021.12.02.471016

  15. Ng TL, Rohac R, Mitchell AJ, Boal AK, Balskus EP (2019) An N-nitrosating metalloenzyme constructs the pharmacophore of streptozotocin. Nature 566(7742):94–99. https://doi.org/10.1038/s41586-019-0894-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. McBride M, Sil D, Ng TL, Crooke AM, Kenney GE, Tysoe CR, Zhang B, Balskus EP, Boal AK, Krebs C, Bollinger JM Jr (2020) A peroxodiiron(III/III) intermediate mediating both N-hydroxylation steps in biosynthesis of the N-nitrosourea pharmacophore of streptozotocin by SznF. J Am Chem Soc 142:11818–11828. https://doi.org/10.1021/jacs.0c03431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McBride MJ, Boal AK (2021) SznF, a Metalloenzyme Employed in the Biosynthesis of Streptozotocin. In: Encyclopedia of inorganic and bioinorganic chemistry. Wiley, pp 1–11. https://doi.org/10.1002/9781119951438.eibc2775

    Chapter  Google Scholar 

  18. Hedges JB, Ryan KS (2019) In vitro reconstitution of the biosynthetic pathway to the nitroimidazole antibiotic azomycin. Angew Chem Int Ed Engl 58(34):11647–11651. https://doi.org/10.1002/anie.201903500

    Article  CAS  PubMed  Google Scholar 

  19. Yun D, García-Serres R, Chicalese BM, An YH, Huynh BH, Bollinger JM Jr (2007) (m-1,2-peroxo)diiron(III/III) complex as a precursor to the diiron(III/IV) intermediate X in the assembly of the iron-radical cofactor of ribonucleotide reductase from mouse. Biochemistry-Us 46(7):1925–1932. https://doi.org/10.1021/bi061717n

    Article  CAS  Google Scholar 

  20. McBride MJ, Pope SR, Hu K, Slater JW, Okafor CD, Balskus EP, Bollinger JM Jr, Boal AK (2020) Structure and assembly of the diiron cofactor in the heme-oxygenase-like domain of the N-nitrosourea-producing enzyme SznF. bioRxiv.:2020.2007.2029.227702. https://doi.org/10.1101/2020.07.29.227702

Download references

Acknowledgements

This work was supported by NIH Grants GM119707 (AKB), GM138580 (JMB), and GM127079 (CK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amie K. Boal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

McBride, M.J. et al. (2023). Methods for Biophysical Characterization of SznF, a Member of the Heme-Oxygenase-Like Diiron Oxidase/Oxygenase Superfamily. In: Weinert, E.E. (eds) Oxygen Sensing. Methods in Molecular Biology, vol 2648. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3080-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3080-8_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3079-2

  • Online ISBN: 978-1-0716-3080-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics