Skip to main content
Log in

Adaptative response to enhanced basal oxidative damage in sod mutants from Saccharomyces cerevisiae

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

We investigated the adaptative response of S. cerevisiae in sod mutants (sod1Δ, sod2Δ and sod1Δsod2Δ) after H2O2 treatment in the stationary phase. sod2Δ and sod1Δsod2Δ demonstrated the highest levels of GSH in the control, suggesting that pathways which include GSH protect these double mutants against oxidative stress. In addition, sod1Δ and sod1Δsod2Δ had higher iron levels than the wild-type, independently of H2O2 stress. Fe levels were increased in sod2Δ following H2O2 In addition, the sod2Δ mutant was more sensitive to H2O2 treatment than the wild-type. These results suggest that sod2Δ sensibility may be associated with •OH production by the Fenton reaction. This increased iron demand in the sod2Δ mutant may be a reflection of the cells’ efforts to reconstitute proteins that are inactivated in conditions of excess superoxide. MDA levels were assayed by HPLC in these mutants. The highest MDA levels could be observed after 10mM H2O2 treatment in the sod1Δsod2Δ double mutant. After treatment with a GSH inhibitor, the MDA level was still higher in the same strain. Thus, both direct and indirect GSH pathways are involved in the protection of lipid membranes and proteins in these mutants and may constitute an adaptative response to enhanced basal oxidative damage produced by superoxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antunes F, Salvador A, Marinho HS, Alves R, Pinto RE: Lipid peroxidation in mitochondrial inner membranes I. An integrative Kinetic model. Free Radic Biol Med 21: 917–943, 1996

    Article  PubMed  Google Scholar 

  2. Wiseman H, Halliwell B: Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J 313: 17–28, 1996

    PubMed  Google Scholar 

  3. Stadman ER, Berkett BS: Reactive oxygen-mediated protein oxidation in aging and disease. Chem Res Toxicol 10: 485–494, 1997

    Article  PubMed  Google Scholar 

  4. Smith MA, Rottkamp CA, Nunomura A, Raina AK, Perry G: Oxidative stress in Alzheimer’s disease. Biochim Biophys Acta 1502: 139–144, 2000

    PubMed  Google Scholar 

  5. Brand MD, Affourtit C, Esteves TC, Green K, Lambert AJ, Miwa S, Pakay’JL Parker N: Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radic Biol Med 37: 755–767, 2004

    Article  PubMed  Google Scholar 

  6. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Alm B, Shaltie LS, Stadman ER: Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186: 464–478, 1990

    PubMed  Google Scholar 

  7. Beal MF: Oxidatively modified proteins in aging and disease. Free Radic Biol Med 32: 797–803, 2002

    Article  PubMed  Google Scholar 

  8. Cambi SL, Lee P, Choi AM: The oxidative stress response. New Horiz 3: 170–182, 1995

    PubMed  Google Scholar 

  9. Gralla EB, Kosman DJ: Molecular genetics of superoxide dismutases in yeast and related fungi. Adv Genet 30: 251–319, 1992

    PubMed  Google Scholar 

  10. Farr SB, D’Ari R, Touati D: Oxygen-dependent mutagenesis in Escherichia Coli lacking superoxide-dismutase. Proc Natl Acad Sci USA 83: 8268–8272, 1996

    Google Scholar 

  11. Doner G, Ege A: Evaluation of digestion procedures of the determination of iron and zinc in biscuits by flame atomic absorption spectrometry. Anal Chim Acta 520: 217–222, 2004

    Article  Google Scholar 

  12. Srinivasan C, Liba A, Imlay JA, Valentine JS, Gralla EB: Yeast lacking superoxide dismutase(s) show elevated levels of “free iron” by whole cell electron paramagnetic resonance. J Biol Chem 275: 29187–29192, 2000

    Google Scholar 

  13. Liu XF, Elashvili I, Gralla EB, Valentine JS, Lapinskas P, Culotta VC: Yeast lacking superoxide-dismutase – isolation of genetic supressors. J Biol Chem 267: 18298–18302, 1992

    PubMed  Google Scholar 

  14. Yoo HY, Kim SS, Rho HM: Overexpression and simple purification of human superoxide dismutase (SOD) in yeast and its resistance to oxidative stress. J Biotechnol 68: 29–35, 1999

    Article  PubMed  Google Scholar 

  15. Gralla EB, Valentine JS: Null mutants of Saccharomyces cerevisiae Cu, Zn superoxide dismutase: characterization and spontaneous mutation rates. J Bacteriol 173: 5918–5920, 1991

    PubMed  Google Scholar 

  16. Manfredini V, Roehrs R, Peralba MCR, Henriques JAP, Saffi J, Ramos ALLP, Benfato MS: Glutathione peroxidase induction protects Saccharomyces cerevisiae sod1Δsod2Δ double mutants against oxidative damage. Braz J Med Biol Res 37: 159–165, 2004

    Article  PubMed  Google Scholar 

  17. Shemann F, Fink GR, Hicks JB: Methods in yeast genetics. Cold Spring Harbor, New York, 1986.

    Google Scholar 

  18. Longo VD, Gralla EB, Valentine JS: Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae. J Biol Chem 271: 12275–12280, 1996

    Article  PubMed  Google Scholar 

  19. Fortuniak A, Zadzinski R, Bilinski T, Bartosz G: Glutathione depletion the yeast Saccharomyces cerevisiae. Biochem Mol Biol Int 38: 901–910, 1996

    PubMed  Google Scholar 

  20. Zadzinski R, Fortuniak A, Bilinski T, Grey M, Bartosz G: Menadione toxicity in Saccharomyces cerevisiae cells: activation by conjugation with glutathione. Biochem Mol Biol Int 44: 747–759, 1998

    PubMed  Google Scholar 

  21. Akerboom TPM, Sies H: Assay of glutathione disulfide, and glutathione mixed disulfides in biological samples. Methods Enzymol 77: 373–382, 1981

    PubMed  Google Scholar 

  22. Esterbauer H, Cheeseman KH: Determination of aldehylic lipid peroxidation products: malonaldehyde and 4-Hydroxylnonenal. Methods Enzymol 186: 407–431, 1990

    PubMed  Google Scholar 

  23. Bradford M: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254, 1976

    PubMed  Google Scholar 

  24. Jakubowski W, Bilinski T, Bartosz G: Oxidative stress during of stationary cultures of the yeast Saccharomyces cerevisiae. Free Radic Biol Med 28: 659–664, 2000

    Article  PubMed  Google Scholar 

  25. Ravichandran V, Seres T, Moriguchi T, Thomas JA, Johnston RB: S-Thiolation of Glyceraldehyde–3-phosphate dehydrogenase induced by the phagocytosis-associated respiratory burst in blood monocytes. J Bio Chem 269: 25010–25015, 1994

    Google Scholar 

  26. Dhindsa RS: Glutathione Status and protein-synthesis during drought and subsequent rehydration in tortula-ruralis. Plant Phys 83: 816–919, 1987

    Google Scholar 

  27. Schuppekoistinen I, Gerdes R, Moldeus P, Cotgreave IA: Studies on the reversibility of protein S-Thiolation in human endothelial-cells. Arch Biochem Biophys 315: 226–234, 1994

    Article  PubMed  Google Scholar 

  28. Lapshina EA, Bartosz G: What determines the antioxidant potential of yeast cells. Biochem Mol Biol Int 37: 949–957, 1995

    PubMed  Google Scholar 

  29. Spooren AAMG, Evelo CTA: Hydroxylamime treatment increases glutathione-protein and protein-protein binding in human erythrocytes. Blood Cell Mol Dis 17: 323–336, 1997

    Article  Google Scholar 

  30. Wernerman J, Luo JL, Hammarqvist F: Glutathione Status in critically-ill patients; possibility of modulation by antioxidants. Proc Nutr Soc 58: 677–680, 1999

    PubMed  Google Scholar 

  31. Hirrlinger J, Schulz JB, Dringen R: Effects on dopamine on the glutathione metabolism of cultured astroglial cells implications for Parkinson’s disease. J Neurochem 82: 458–467, 2002

    Article  PubMed  Google Scholar 

  32. Schmidt M, Grey M, Brendel M: A microbiological assay for the quantitative determination of glutathione. BioTechnol 21: 881–886, 1996

    Google Scholar 

  33. De Freitas JM, Liba A, Meneghini R, Valentine JS, Gralla EB: Yeast lacking Cu–Zn Superoxide dismutase show altered iron homeostasis. J Biol Chem 275: 11645–11649, 2000

    Article  PubMed  Google Scholar 

  34. Liochev SI, Fridovich I: The role of O2 in the production of OH: in vitro and in vivo. Free Radic Biol Med 16: 29–33, 1994

    Article  PubMed  Google Scholar 

  35. Fridovich I: Superoxide radical and superoxide dismutases. Annu Ver Biochem 64: 97–112, 1995.

    Article  Google Scholar 

  36. Cabiscol E, Piulats E, Ecahvel P, Herrero E, Ros J: Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae. J Biol Chem 275: 27393–27398, 2000

    PubMed  Google Scholar 

  37. Blackburn AC, Doe WF, Buffinton GD: Protein carbonyl formation on mucosal protein in vitro and dextran sulfate-induced colitis. Free Radic Biol Med 27: 262–270, 1999

    Article  PubMed  Google Scholar 

  38. Inoue Y, Matsuda T, Sugiyama K, Izawa S, Kimura A: Genetic analysis of glutathione peroxidase in oxidative stress response of Saccharomyces cerevisiae. J Biol Chem 274: 27002–27009, 1999

    Article  PubMed  Google Scholar 

  39. Avery AM, Avery SM: Saccharomyces cerevisiae expresses three phospholipid hydroperoxide glutathione peroxidases. J Biol Chem 276: 33730–33735, 2001

    Article  PubMed  Google Scholar 

  40. Tsuzi D, Maeta K, Takatsume Y, Izawa S, Inoue Y: Regulation of the yeast phospholipid hydroperoxide glutathione peroxidase GPX2 by oxidative stress is mediated by Yap1 and Skn7. FEBS Lett 565: 148–154, 2004

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mara Silveira Benfato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manfredini, V., Martins, V.D., Peralba, M.d.C.R. et al. Adaptative response to enhanced basal oxidative damage in sod mutants from Saccharomyces cerevisiae. Mol Cell Biochem 276, 175–181 (2005). https://doi.org/10.1007/s11010-005-4058-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-005-4058-0

Keywords

Navigation