Skip to main content
Log in

Interactions between atrial natriuretic peptide and the renin–angiotensin system during salt-sensitivity exhibited by the proANP gene-disrupted mouse

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

To understand the involvement of the systemic and cardiac components of the renin–angiotensin system (RAS) in the development of cardiac hypertrophy induced by salt intake, the present study analyzed the effect of high dietary salt (8.0% NaCl) in mice possessing a full complement (+/+) or ablation (−/−) of atrial natriuretic peptide (ANP). A 3 week treatment of 8.0% NaCl was able to induce cardiac hypertrophy in both genotypes, though exaggerated hypertrophy was noted in the ANP −/− mouse. Although a marked decrease in angiotensin II (Ang II) plasma levels in both genotypes fed a high salt diet was observed, systemic RAS mRNA components were altered only in the ANP −/− animals and remained unchanged in ANP +/+ mice. Decreased Ang II plasma levels were better correlated with decreases in angiotensinogen protein expression observed in both genotypes. High salt had no effect on cardiac RAS mRNA components in the ANP −/− animals, but did cause a significant decrease in some cardiac RAS mRNA components in ANP +/+ mice. As expected, high salt was able to increase plasma ANP levels and ventricular mRNA expression of ANP (ANP +/+ mice only) and B-type NP in both genotypes. The latter peptides are key cardiac markers of hypertrophy whose increased expression correlate well with the physical salt-induced cardiac alterations observed in this study. These findings suggest that although the RAS does not play a key role in salt-induced cardiac hypertrophy, ANP is an important determinant of the degree of salt-sensitivity observed in the proANP gene-disrupted animal. (Mol Cell Biochem 276: 121–131, 2005)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mizelle HL, Hall JE, Hildebrandt DA: Atrial natriuretic peptide and pressure natriuresis: interactions with the renin–angiotensin system. Am J Physiol 257: R1169–R1174, 1989

    PubMed  Google Scholar 

  2. Johnston CI, Hodsman PG, Kohzuki M, Casley DJ, Fabris B, Phillips PA: Interaction between atrial natriuretic peptide and the renin angiotensin aldosterone system. Endogenous antagonists. Am J Med 87: 24S–28S, 1989

    Article  Google Scholar 

  3. Johnston CI, Phillips PA, Arnolda L, Mooser V: Modulation of the renin–angiotensin system by atrial natriuretic peptide. J Cardiovasc Pharmacol 16(Suppl 7): S43–S46, 1990

    Google Scholar 

  4. Schmieder RE, Messerli FH, Garavaglia GE, Nunez BD: Dietary salt intake. A determinant of cardiac involvement in essential hypertension. Circulation 78: 951–956, 1988

    PubMed  Google Scholar 

  5. Melo LG, Veress AT, Chong CK, Pang SC, Flynn TG, Sonnenberg H: Salt-sensitive hypertension in ANP knockout mice: potential role of abnormal plasma renin activity. Am J Physiol 274: R255–R261, 1998

    PubMed  Google Scholar 

  6. Melo LG, Veress AT, Chong CK, Ackermann U, Sonnenberg H: Salt-sensitive hypertension in ANP knockout mice is prevented by AT1 receptor antagonist losartan. Am J Physiol 277: R624–R630, 1999

    PubMed  Google Scholar 

  7. Griendling KK, Murphy TJ, Alexander RW: Molecular biology of the renin–angiotensin system. Circulation 87: 1816–1828, 1993

    PubMed  Google Scholar 

  8. Dzau VJ: Molecular biology of angiotensin II biosynthesis and receptors. Can J Cardiol 11(Suppl F): 21F–26F, 1995

    PubMed  Google Scholar 

  9. Dinh DT, Frauman AG, Johnston CI, Fabiani ME: Angiotensin receptors: distribution, signalling and function. Clin Sci (Lond) 100: 481–492, 2001

    Google Scholar 

  10. Stroth U, Unger T: The renin–angiotensin system and its receptors. J Cardiovasc Pharmacol 33(Suppl 1): S21–S28, 1999

    Article  PubMed  Google Scholar 

  11. Sakata Y, Masuyama T, Yamamoto K, Doi R, Mano T, Kuzuya T, et~al.: Renin angiotensin system-dependent hypertrophy as a contributor to heart failure in hypertensive rats: different characteristics from renin angiotensin system-independent hypertrophy. J Am Coll Cardiol 37: 293–299, 2001

    Article  PubMed  Google Scholar 

  12. Levin ER, Gardner DG, Samson WK: Natriuretic peptides. N Engl J Med 339: 321–328, 1998

    Article  PubMed  Google Scholar 

  13. John SW, Krege JH, Oliver PM, Hagaman JR, Hodgin JB, Pang SC, et~al.: Genetic decreases in atrial natriuretic peptide and salt-sensitive hypertension. Science 267: 679–681, 1995

    PubMed  Google Scholar 

  14. Sun JZ, Chen SJ, Majid-Hasan E, Oparil S, Chen YF: Dietary salt supplementation selectively downregulates NPR-C receptor expression in kidney independently of ANP. Am J Physiol Renal Physiol 282: F220–F227, 2002

    PubMed  Google Scholar 

  15. Tse MY, Watson JD, Sarda IR, Flynn TG, Pang SC: Expression of B-type natriuretic peptide in atrial natriuretic peptide gene disrupted mice. Mol Cell Biochem 219: 99–105, 2001

    Article  PubMed  Google Scholar 

  16. Sangaralingham SJ, Pak BJ, Tse MY, Angelis E, Adams MA, Smallegange C, et~al.: Expression of the translational repressor NAT1 in experimental models of cardiac hypertrophy. Mol Cell Biochem 245: 183–190, 2003

    Article  PubMed  Google Scholar 

  17. Zhao X, White R, Van Huysse J, Leenen FH: Cardiac hypertrophy and cardiac renin–angiotensin system in Dahl rats on high salt intake. J Hypertens 18: 1319–1326, 2000

    Article  PubMed  Google Scholar 

  18. Lal A, Veinot JP, Leenen FH: Prevention of high salt diet-induced cardiac hypertrophy and fibrosis by spironolactone. Am J Hypertens 16: 319–323, 2003

    Article  PubMed  Google Scholar 

  19. Yuan BX, Leenen FH: Dietary sodium intake and left ventricular hypertrophy in normotensive rats. Am J Physiol 261: H1397–H1401, 1991

    PubMed  Google Scholar 

  20. Feng JA, Perry G, Mori T, Hayashi T, Oparil S, Chen YF: Pressure-independent enhancement of cardiac hypertrophy in atrial natriuretic peptide-deficient mice. Clin Exp Pharmacol Physiol 30: 343–349, 2003

    Article  PubMed  Google Scholar 

  21. Tamura K, Umemura S, Fukamizu A, Ishii M, Murakami K: Recent advances in the study of renin and angiotensinogen genes: from molecules to the whole body. Hypertens Res 18: 7–18, 1995

    PubMed  Google Scholar 

  22. Harmsen E, Leenen FH: Dietary sodium induced cardiac hypertrophy. Can J Physiol Pharmacol 70: 580–586, 1992

    PubMed  Google Scholar 

  23. Danser AH: Local renin–angiotensin systems: the unanswered questions. Int J Biochem Cell Biol 35: 759–768, 2003

    Article  PubMed  Google Scholar 

  24. Mazzolai L, Nussberger J, Aubert JF, Brunner DB, Gabbiani G, Brunner HR, et~al.: Blood pressure-independent cardiac hypertrophy induced by locally activated renin–angiotensin system. Hypertension 31: 1324–1330, 1998

    PubMed  Google Scholar 

  25. Dostal DE, Baker KM: The cardiac renin–angiotensin system: conceptual, or a regulator of cardiac function? Circ Res 85: 643–650, 1999

    PubMed  Google Scholar 

  26. Leenen FH, White R, Yuan B: Isoproterenol-induced cardiac hypertrophy: role of circulatory versus cardiac renin–angiotensin system. Am J Physiol Heart Circ Physiol 281: H2410–H2416, 2001

    PubMed  Google Scholar 

  27. Wang D, Oparil S, Feng JA, Li P, Perry G, Chen LB, et~al.: Effects of pressure overload on extracellular matrix expression in the heart of the atrial natriuretic peptide-null mouse. Hypertension 42: 88–95, 2003

    Article  PubMed  Google Scholar 

  28. Gardner DG: Natriuretic peptides: markers or modulators of cardiac hypertrophy? Trends Endocrinol Metab 14: 411–416, 2003

    Article  PubMed  Google Scholar 

  29. Espiner EA: Physiology of natriuretic peptides. J Intern Med 235: 527–541, 1994

    PubMed  Google Scholar 

  30. Rubattu S, Volpe M: The atrial natriuretic peptide: a changing view. J Hypertens 19: 1923–1931, 2001

    Article  PubMed  Google Scholar 

  31. Tamura N, Ogawa Y, Chusho H, Nakamura K, Nakao K, Suda M, et~al.: Cardiac fibrosis in mice lacking brain natriuretic peptide. Proc Natl Acad Sci USA 97: 4239–4244, 2000

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen C. Pang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angelis, E., Tse, M.Y. & Pang, S.C. Interactions between atrial natriuretic peptide and the renin–angiotensin system during salt-sensitivity exhibited by the proANP gene-disrupted mouse. Mol Cell Biochem 276, 121–131 (2005). https://doi.org/10.1007/s11010-005-3672-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-005-3672-1

Keywords

Navigation