Skip to main content
Log in

Stochastic Analysis of Rumor Spreading with Multiple Pull Operations

  • Published:
Methodology and Computing in Applied Probability Aims and scope Submit manuscript

Abstract

We propose and analyze a new asynchronous rumor spreading protocol to deliver a rumor to all the nodes of a large-scale distributed network. This spreading protocol relies on what we call a k-pull operation, with \(k \ge 2\). Specifically a k-pull operation consists, for an uninformed node s, in contacting \(k-1\) other nodes at random in the network, and if at least one of them knows the rumor, then node s learns it. We perform a thorough study of the total number \(T_{k,n}\) of k-pull operations needed for all the n nodes to learn the rumor. We compute the expected value and the variance of \(T_{k,n}\), together with their limiting values when n tends to infinity. We also analyze the limiting distribution of \((T_{k,n} - {E}(T_{k,n}))/n\) and prove that it has a double exponential distribution when n tends to infinity. Finally, we show that when \(k > 2\), our new protocol requires less operations than the traditional 2-push-pull and 2-push protocols by using stochastic dominance arguments. All these results generalize the standard case \(k=2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Acan H, Collevecchio A, Mehrabian A, Wormald N (2017) On the push & pull protocol for rumour spreading. Trends Math 6:3–10

    Article  Google Scholar 

  • Chierichetti F, Lattanzi S, Panconesi A (2011) Rumor spreading in social networks. Theor Comput Sci 412(24):2602–2610

    Article  MathSciNet  Google Scholar 

  • Clementi A, Crescenzi P, Doerr C, Fraigniaud P, Pasquale F, Silvestri R (2015) Rumor spreading in random evolving graphs. Random Struct Algoritm 48(2):290–312

    Article  MathSciNet  Google Scholar 

  • Daum S, Kuhn F, Maus Y (2016) Rumor spreading with bounded indegree. In: Proceedings of the International Colloquium on Structural Information and Communication Complexity (SIROCCO)

  • Demers AJ, Greene DH, Hauser CH, Irish W, Larson J, Shenker SJ, Sturgis HE, Swinehart DC, Terry DB (1987) Epidemic algorithms for replicated database maintenance. PODC 87:1–12

    Google Scholar 

  • Doerr B, Fouz M, Friedrich T (2012) Asynchronous rumor spreading in preferential attachment graphs. SWAT 2012:307–315

    MathSciNet  MATH  Google Scholar 

  • Doerr B, Fouz M, Friedrich T (2012) Experimental analysis of rumor spreading in social networks. MedAlg 2012:159–173

    MathSciNet  MATH  Google Scholar 

  • Doerr B, Kostrygin A (2017) Randomized Rumor Spreading Revisited. In: Chatzigiannakis I, Indyk P, Kuhn F, Muscholl A (eds) ICALP 2017, vol. 80. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, pp. 138:1–138:14

  • Duan Z, Gopalan K, Dong Y (2005) Probabilistic reliable dissemination in large-scale systems. SRUTI

  • Feige F, Peleg D, Raghavan P, Upfal E (1990) Randomized broadcast in networks. Random Struct Algoritm 1(4):447–460

    Article  MathSciNet  Google Scholar 

  • Fountoulakis N, Panagiotou K (2013) Rumor spreading on random regular graphs and expanders. Random Struct Algoritm 43(2):201–220

    Article  MathSciNet  Google Scholar 

  • Frieze A, Grimmet G (1985) The shortest-path problem for graphs with random arc-lengths. Discret Appl Math 10(1):57–77

    Article  MathSciNet  Google Scholar 

  • Ganesh AJ (2015) Rumour spreading on graphs. Technical report: https://people.maths.bris.ac.uk/~maajg/teaching/complexnets/rumours.pdf

  • Giakkoupis G (2011) Tight bounds for rumor spreading in graphs of a given conductance. In: Proceedings of the International Symposium on Theoretical Aspects of Computer Science (STACS)

  • Giakkoupis G (2014) Tight bounds for rumor spreading with vertex expansion. In: Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)

  • Giakkoupis G, Nazari Y, Woelfel P (2016) How asynchrony affects rumor spreading time. PODC ’16 185–194

  • Gordon L (1989) Bounds for the distribution of the generalized variance. Ann Stat 17(4):1684–1692

    Article  MathSciNet  Google Scholar 

  • Janson S (2018) Tail bounds for sums of geometric and exponential variables. Statist Probab Lett 135:1–6

    Article  MathSciNet  Google Scholar 

  • Karp R, Schindelhauer C, Shenker S, Vocking B (2000) Randomized rumor spreading. In: Proceedings of the Annual Symposium on Foundations of Computer Science (FOCS)

  • Mocquard Y, Robert S, Sericola B, Anceaume E (2016) Analysis of the propagation time of a rumour in large-scale distributed systems. NCA 2016

  • Moreno Y, Nekovee M, Pacheco AF (2004) Dynamics of rumor spreading in complex networks. Phys Rev 69:248–258

    Google Scholar 

  • Nazari Y (2016) Analysis of asynchronous and synchronous rumor spreading protocols. Master’s thesis, University of Calgary. http://hdl.handle.net/11023/3136

  • Panagiotou K, Perez-Gimenez X, Sauerwald T, Sun H (2015) Randomized rumor spreading: the effect of the network topology. Comb Probab Comput 24(2):457–479

    Article  Google Scholar 

  • Panagiotou K, Pourmiri A, Sauerwald T (2015) Faster rumor spreading with multiple calls. Electron J Comb 22

  • Pittel B (1987) On spreading a rumor. SIAM J Appl Math 47(1):213–223

    Article  MathSciNet  Google Scholar 

  • Pourmiri A, Ramezani F (2019) Brief announcement: Ultra-fast asynchronous randomized rumor spreading. SPAA 2019

  • Sanghavi S, Hajek B, Massoulié L (2007) Gossiping with multiple messages. IEEE Trans Inf Theory 53:123

    Article  MathSciNet  Google Scholar 

  • Sericola B (2013) Markov Chains. Algorithms and Applications. John Wiley & Sons, Theory

    Book  Google Scholar 

  • Stroock DW (2010) Probability Theory: An Analytic View, 2nd ed. Cambridge University Press

  • Yao G, Bi J, Wang S, Zhang Y, Li Y (2010) A pull model IPv6 duplicate address detection. LCN 2010

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuelle Anceaume.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Let \(X_1, \ldots ,X_n\) be n independent geometric random variables with possibly distinct parameters, i.e. such that \(X_i \sim \mathcal {G}(p_i)\) with \(p_i \in (0,1]\). Let \(X = X_1 + \cdots + X_n\), \(\mu = {E}(X)\) and \(p_{*} = \min _{i=1,\ldots ,n} p_i\). We then have the following results which have been proved in Janson (2018).

Theorem 13

For any \(p_1,\ldots ,p_n \in (0,1]\) and any \(\lambda \ge 1\),

$$\begin{aligned} {P}\{X \ge \lambda \mu \} \le e^{-p_*\mu (\lambda - 1 - \ln (\lambda ))}. \end{aligned}$$

Theorem 14

For any \(p_1,\ldots ,p_n \in (0,1]\) and any \(\lambda \le 1\),

$$\begin{aligned} {P}\{X \le \lambda \mu \} \le e^{-p_*\mu (\lambda - 1 - \ln (\lambda ))}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robin, F., Sericola, B., Anceaume, E. et al. Stochastic Analysis of Rumor Spreading with Multiple Pull Operations. Methodol Comput Appl Probab 24, 2195–2211 (2022). https://doi.org/10.1007/s11009-021-09911-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11009-021-09911-4

Keywords

Mathematics Subject Classification

Navigation