Skip to main content
Log in

On a Markovian Game Model for Competitive Insurance Pricing

  • Published:
Methodology and Computing in Applied Probability Aims and scope Submit manuscript

Abstract

In this paper, we extend the non-cooperative one-period game of Dutang et al. (Journal of Operational Research 231(3):702–711, 2013) to model a non-life insurance market over several periods by considering the repeated (one-period) game. Using Markov chain methodology, we derive general properties of insurer portfolio sizes given a price vector. In the case of a regulated market (identical premium), we are able to obtain convergence measures of long run market shares. We also investigate the consequences of the deviation of one player from this regulated market. Finally, we provide some insights of long-term patterns of the repeated game as well as numerical illustrations of leadership and ruin probabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. \(\mathcal M_d(n, \mathbf{p})\) denotes the multinomial distribution of dimension d with trial number parameter n and event probability parameter \(\mathbf{p}\in [0,1]^d\).

References

  • Aase KK (1993) Equilibrium in a reinsurance syndicate; existence, uniqueness and characterization. ASTIN Bulletin 23(2):185–211

    Article  MathSciNet  Google Scholar 

  • Albrecher H, Daily-Amir D (2017) On effects of asymmetric information on non-life insurance prices under competition. International Journal of Data Analysis Techniques and Strategies 9(4):287–299

    Article  Google Scholar 

  • Asimit A, Boonen T, Chi Y, Chong W (2021) Risk sharing with multiple indemnity environments. Eur J Oper Res 295(2):587–603

    Article  MathSciNet  Google Scholar 

  • Asmussen S, Christensen B, Thoergersen J (2019a) Nash equilibrium premium strategies for push-pull competition in a frictionnal non-life insurance market. Insurance Math Econom 87:92–100

  • Asmussen S, Christensen B, Thoergersen J (2019b) Stackelberg equilibrium premium strategies for push-pull competition in a non-life insurance market with product differentiation. Risks 7(49):1–23

    Google Scholar 

  • Asmussen S, Jensen J, Rojas-Nandayapa L (2016) On the Laplace transform of the lognormal distribution. Methodol Comput Appl Probab 18(2):441–458

    Article  MathSciNet  Google Scholar 

  • Battulga G, Altangerel L, Battur G (2018) An extension of one-period Nash equilibrium model in non-life insurance markets. Appl Math 9:1339–1350

    Article  Google Scholar 

  • Boonen T, Pantelous A, Wu R (2018) Non-cooperative dynamic games for general insurance markets. Insurance Math Econom 78:123–135

  • Boonen TJ (2016) Nash equilibria of over-the-counter bargaining for insurance risk redistributions: The role of a regulator. Eur J Oper Res 250(3):955–965

    Article  MathSciNet  Google Scholar 

  • Borch K (1962) Equilibrium in a reinsurance market. Econometrica 30(3):424–444

    Article  Google Scholar 

  • Borch K (1974) The Mathematical Theory of Insurance. Heath and Company/Lexington Books, D. C

    MATH  Google Scholar 

  • Boucherie R, van Dijk N (2011) Queueing Networks: a Fundamental Approach. Springer

  • Breuer L, Baum D (2005) An Introduction to Queueing Theory and Matrix-Analytic Methods. Springer

  • Brockett P, Xiaohua X (1997) Operations research in insurance: A review. Insurance Math Econom 19(2):154

  • Bühlmann H (1980) An economic premium principle. ASTIN Bulletin 11(1):52–60

    Article  MathSciNet  Google Scholar 

  • Bühlmann H (1984) The general economic premium principle. ASTIN Bulletin 14(1):13–21

    Article  Google Scholar 

  • Chen L, Shen Y (2018) On a new paradigm of optimal reinsurance: a stochastic Stackelberg differential game between an insurer and a reinsurer. ASTIN Bulletin 48:905–960

    Article  MathSciNet  Google Scholar 

  • Chen L, Shen Y, Su J (2020) A continuous-time theory of reinsurance chains. Insurance Math Econom 95:129–146

  • Daily-Amir D (2019) Market Share Analysis and Non-cooperative Game Theory with Applications in Swiss Health Insurance. PhD thesis, Université de Lausanne, Faculté des hautes études commerciales

  • Daily-Amir D, Albrecher H, Bladt M, Wagner J (2019) On market share drivers in the swiss mandatory health insurance sector. Risks 7(4):114

    Article  Google Scholar 

  • Dutang C, Albrecher H, Loisel S (2013) Competition between non-life insurers under solvency constraints: a game-theoretic approach. Eur J Oper Res 231(3):702–711

    Article  Google Scholar 

  • Emms P (2012) Equilibrium pricing of general insurance policies. North American Actuarial Journal 16(3):323–349

    Article  MathSciNet  Google Scholar 

  • Emms P, Haberman S, Savoulli I (2007) Optimal strategies for pricing general insurance. Insurance Math Econom 40(1):15–34

  • Facchinei F, Kanzow C (2010) Generalized nash equilibrium problems. Ann Oper Res 175(1):177–211

    Article  MathSciNet  Google Scholar 

  • Henderson W, Pearce C, Taylor P, van Dijk N (1990) Closed queueing networks with batch services. Queueing Systems 6:59–70

    Article  MathSciNet  Google Scholar 

  • Jin Z, Yin G, Wu F (2013) Optimal reinsurance strategies in regime-switching jump diffusion models: Stochastic differential game formulation and numerical methods. Insurance Math Econom 53(3):733–746

  • Kaas R, Goovaerts M, Dhaene J, Denuit M (2008) Modern Actuarial Risk Theory: Using R, vol. 2nd ed., Corr. 2nd Printing. Springer Heidelberg Dordrecht London New York 

  • Klein RW, Phillips RD, Shiu W (2002) The capital structure of firms subject to price regulation: Evidence from the insurance industry. J Financ Serv Res 21(1):79–100

    Article  Google Scholar 

  • Kliger D, Levikson B (1998) Pricing insurance contracts - an economic viewpoint. Insurance Math Econom 22(3):243–249

  • Klugman S, Panjer H, Willmot G (2012) Loss Models: From Data to Decisions, 4th ed. Wiley

  • Lemaire J (1984) An application of game theory: Cost allocation. ASTIN Bulletin 14(1):61–81

    Article  Google Scholar 

  • Lemaire J (1991) Cooperative game theory and its insurance applications. ASTIN Bulletin 21(1):1–40

    Article  Google Scholar 

  • Li D, Li B, Shen Y (2021) A dynamic pricing game for general insurance market. J Comput Appl Math 389:113349

  • Marker JO (1998) Studying policy retention using Markov chains. Casualty Actuarial Society v85

  • McFadden D (1981) Econometric Models of Probabilistic Choice. In: Structural Analysis of Discrete Data with Econometric Applications. The MIT Press (ch. 5)

  • Moreno-Codina J, Gomez-Alvado F (2008) Price optimisation for profit and growth. Towers Perrin Emphasis 4:18–21

    Google Scholar 

  • Mourdoukoutas F, Boonen T, Koo B, Pantelous A (2021) Pricing in a competitive stochastic insurance market. Insurance Math Econom 97:44–56

  • Norris J 1997 Markov Chains. Cambridge University Press

  • Osborne M, Rubinstein A 2006 A Course in Game Theory. Massachusetts Institute of Technology

  • Pantelous A, Passalidou E (2013) Optimal premium pricing policy in a competitive insurance market environment. Annals of Actuarial Science 7(2):175–191

    Article  Google Scholar 

  • Pantelous A, Passalidou E (2015) Optimal premium strategies for competitive general insurance markets. Appl Math Comput 259:858–874

    MathSciNet  MATH  Google Scholar 

  • Pantelous A, Passalidou E (2016) Optimal strategies for a non-linear premium-reserve model in a competitive insurance market. Annals of Actuarial Science 11(1):1–19

    Article  Google Scholar 

  • Polborn MK (1998) A model of an oligopoly in an insurance market. The Geneva Paper on Risk and Insurance Theory 23(1):41–48

    Article  Google Scholar 

  • Powers MR, Shubik M (1998) On the tradeoff between the law of large numbers and oligopoly in insurance. Insurance Math Econom 23(2):141–156

  • Powers MR, Shubik M, Yao ST (1998) Insurance market games: Scale effects and public policy. J Econ 67(2):109–134

    Article  Google Scholar 

  • Rees R, Gravelle H, Wambach A (1999) Regulation of insurance markets. The Geneva Paper on Risk and Insurance Theory 24(1):55–68

    Article  Google Scholar 

  • Rosen J (1965) Existence and uniqueness of equilibrium points for concave N-person games. Econometrica 33(3):520–534

    Article  MathSciNet  Google Scholar 

  • Shaked M, Shanthikuma JG (2007) Stochastic Orders. Springer

  • Taylor, G. C (1986) Underwriting strategy in a competitive insurance environment. Insurance Math Econom 5(1):59–77

  • Taylor GC (1987) Expenses and underwriting strategy in competition. Insurance Math Econom 6(4):275–287

  • Tsanakas A, Christofides N (2006) Risk exchange with distorted probabilities. ASTIN Bulletin 36(1):219–243

    Article  MathSciNet  Google Scholar 

  • Wang S, Major J, Pan C, Leong J (2010) U.S. Property-Casualty: underwriting cycle modelling and risk benchmarks. Research Paper of Risk Lighthouse LLC and Guy Carpenter & Company

  • Wu R, Pantelous A (2017) Potential games with aggregation in non-cooperative general insurance markets. ASTIN Bulletin 47(1):269–302

    Article  MathSciNet  Google Scholar 

  • Zeng X (2010) A stochastic differentiel reinsurance game. J Appl Probab 47:335–349

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are also very grateful for the useful suggestions and comments of the two anonymous referees which led to significant improvements of this article. The remaining errors, of course, should be attributed to the authors alone. This paper also benefits from fruitful discussions at meetings of the French chair DIALog – Digital Insurance And Long-term risks – under the aegis of the Fondation du Risque, a joint initiative by UCBL and CNP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Dutang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

1.1 Proofs of Section 3

We prove below Propositions 1, 2, 3, 5 with standard probabilistic arguments. We recall that bolded notation are reserved for vectors, \(G^P\) and \(G^M\) stand for the probability and the moment generating functions, \(\otimes\) the Kronecker product.

1.1.1 Properties of the Lapse Model

Proof (Proof of Prop. 1)

By A3, \((C_{i,t})_t\) is a Markov chain with transition matrix \(P_\rightarrow (\varvec{x}_t)\) defined as

$$\begin{aligned} P_\rightarrow (\varvec{x}_t)= \left( \begin{matrix} p_{1 \rightarrow 1}(\varvec{x}_t) &{} \dots &{} p_{1 \rightarrow J}(\varvec{x}_t) \\ &{} \dots &{} \\ p_{J \rightarrow 1}(\varvec{x}_t) &{} \dots &{} p_{J \rightarrow J}(\varvec{x}_t) \end{matrix}\right) . \end{aligned}$$

In fact, \(P_\rightarrow\) is a matrix function. By Proposition 14, the transition matrix has no null terms. It is immediate that the transition from \(C_{i,0}\) to \(C_{i,t}\) is the multiplication of the t matrices \(P_\rightarrow (\varvec{x}_1)\),..., \(P_\rightarrow (\varvec{x}_t)\). On the finite state space \(\{1,\dots , J\}\), the Markov chain is both irreducible and aperiodic using Proposition 14 in Appendix 2. By (Norris 1997, p. 41), the process \((C_{1,t},C_{2,t})_t\) is still a Markov chain on the space \(E^2=\{1,\dots ,J\}^2\) with transition matrix \(P_\rightarrow (\varvec{x}_t)\otimes P_\rightarrow (\varvec{x}_t)\). Iterating \(N-1\) more times leads to the result.

Proof (Proof of Prop. 2)

Let \(\mathcal N_j\) be the set of customers of Insurer j at time 0. That is \(\forall i\in \mathcal N_j, C_{i,0}=j\). As \((C_{i,t})_t\) is a Markov chain, the transition from Insurer j to Insurer k is governed by the jth row \(\tilde{p}_j\) of the matrix \(P_\rightarrow ^{(t)}=P_\rightarrow (\varvec{x}_1)\times \dots \times P_\rightarrow (\varvec{x}_t),~ \tilde{p}_j = \left( P_{\rightarrow ,j,1}^{(t)},\dots , P_{\rightarrow ,j,J}^{(t)}\right) .\) Thus \(\forall i\in \mathcal N_j, C_{i,t}~\vert ~ C_{i,0}=j\sim \mathcal M_J(1, \tilde{\varvec{p}}_{j})\). By A1 and A2, those policyholders of Insurer j will choose insurers according to a multinomial distribution \(\overline{\varvec{C }}_{j,t}\sim \mathcal M_J(n_{j,t-1}, \tilde{\varvec{p}}_{j})\) given \(N_{j,0}=n_{j,0}\). From period \(t-1\) to period t, the transition matrix simplifies to \(P_\rightarrow (\varvec{x}_t)\) and \(\tilde{\varvec{p}}_j = \varvec{p}_{j\rightarrow }(\varvec{x}_t)\).

Proof (Proof of Prop. 3)

The portfolio sizes vector is the sum of choice vectors \(\varvec{N}_{t} =\overline{\varvec{C }}_{1,t}+\dots + \overline{\varvec{C }}_{J,t}.\) By A2, Proposition 2 and given \(\varvec{N}_{t-1}=\varvec{n}\), \((\overline{\varvec{C }}_{j,t})_j\) are independent multinomial vectors with parameters \(\mathcal M_J(n_{j}, \varvec{p}_{j\rightarrow }(\varvec{x}_t))\) for \(j=1,\dots ,J\). Therefore, \(\varvec{N}_t\) (obtained by summing over j) has a known distribution given \(\varvec{N}_{t-1}=\varvec{n}\). Since \((\varvec{N}_t)_t\) is a discrete-time process taking values in \(\mathcal S_{ms}\), \((\varvec{N}_t)_t\) is a Markov chain. By recurrence, the number of elements of \(\mathcal S_{ms}\) is \(\mathrm{Card}(\mathcal S_{ms})=\left( {\begin{array}{c}N+J-1\\ N\end{array}}\right)\). The transition matrix of size \(\mathrm{Card}(\mathcal S_{ms})\times \mathrm{Card}(\mathcal S_{ms})\) has a complex expression \(\overline{P}_t = \left( P(\varvec{N}_t=\varvec{m}\vert \varvec{N}_{t-1}=\varvec{n}) \right) _{\varvec{n},\varvec{m}}\) where \(\varvec{n},\varvec{m}\in \mathcal S_{ms}\) and

$$\begin{aligned}P(\varvec{N}_t=\varvec{m}\vert \varvec{N}_{t-1}=\varvec{n}) = \sum _{ \underset{ \text {s.t. } \sum \limits _l c_{1l} = n_{1} }{ 0\le c_{11}, \dots , c_{1J} \le N, } } \dots \sum _{ \underset{ \text {s.t. } \sum \limits _l c_{Jl} = n_{J} }{ 0\le c_{J1}, \dots , c_{JJ} \le N, } } \prod _{\underset{\sum \limits _{k} c_{kj} = m_{j}}{j=1,}}^J \frac{n_j!}{c_{j1}!\dots c_{jJ}!} \left( p_{j \rightarrow 1}(\mathbf{x}_t)\right) ^{c_{j1}}\dots \left( p_{j \rightarrow i}(\mathbf{x}_t)\right) ^{c_{jJ}}. \end{aligned}$$

The probability \(P(\overline{\varvec{C }}_{j,t}=\varvec{c}_{j} \vert N_{j,t-1}=n_j)\) depends on the price vector \(\varvec{x}_t\), and therefore is time dependent. By A2, the probability generating function of \(\varvec{N}_t\vert \varvec{N}_{t-1}=\varvec{n}\) is in constrast simpler

$$\begin{aligned} G^P_{\varvec{N}_t\vert \varvec{N}_{t-1}=\varvec{n}}(\varvec{z})= & {} G^P_{\overline{\mathbf{C }}_{1,t}}(\varvec{z})\times \dots \times G^P_{\overline{\mathbf{C }}_{J,t}}(\varvec{z}) = \left( \varvec{z}^T p_{1\rightarrow }(\varvec{x}_t)\right) ^{n_{1}}\times \dots \times \left( \varvec{z}^T p_{J\rightarrow }(\varvec{x}_t)\right) ^{n_{J}}, \end{aligned}$$

where \(z\in \mathbb R^J\), \({}^{T}\) denotes the matrix transpose and \(G^P(.)\) denotes the probability generating function. Using Proposition 2, we have \(\overline{\varvec{C }}_{j,t}~\vert ~ \varvec{N}_{j,0}=\varvec{n}\) follows a multinomial distribution with parameters \(\mathcal M_J(n_{j}, \tilde{\varvec{p}}_{j})\). By similar arguments, \(G^P_{\varvec{N}_t\vert \varvec{N}_{0}=\varvec{n}}(\varvec{z}) =(P_\rightarrow ^{(t)}\times \varvec{z})^{\varvec{n}}\). If \(\mu\) is the invariant measure of \((C_{i,t})_t\), then

$$\begin{aligned} P_\rightarrow ^{(t)} \underset{t\rightarrow +\infty }{\longrightarrow } \left( \begin{matrix}\mu \\ \dots \\ \mu \end{matrix}\right) \Rightarrow P_\rightarrow ^{(t)}\times \varvec{z}= \left( \begin{matrix}\mu ^T \varvec{z}\\ \dots \\ \mu ^T \varvec{z}\end{matrix}\right) \Rightarrow G^P_{\varvec{N}_t\vert \varvec{N}_{t-1}=\varvec{n}}(\varvec{z}) = (\mu ^T \varvec{z})^{\sum _i n_i}. \end{aligned}$$

In other words, the probability generating function of \(\varvec{N}_t~\vert ~\varvec{N}_{0}=\varvec{n}\) is the p.g.f. of a multinomial distribution. Since we obtain a limiting distribution for the Markov chain \((\varvec{N}_t)_t\) is also its invariant measure, see, e.g., (Norris 1997, p. 33).

Proof (Proof of Prop. 4)

By A4, the probability generating function of the sum constituting \(N_{j,t}\) is the product of generating function of each binomially distributed random variables

$$\begin{aligned} G^P_{N_{j,t}\vert \varvec{N}_{t-1}=\varvec{n}}(z) = \prod _{k=1}^J (1-p_{k \rightarrow j}(\varvec{x}_t) + p_{k \rightarrow j}(\varvec{x}_t) z)^{n_{k}}. \end{aligned}$$

Differentiating with respect to z, we get

$$\begin{aligned}G^P_{N_{j,t}\vert \varvec{N}_{t-1}=\varvec{n}}{}^\prime(z) = \sum _{k=1}^J n_kp_{k \rightarrow j}(\varvec{x}_t) (1-p_{k \rightarrow j}(\varvec{x}_t) + p_{k \rightarrow j}(\varvec{x}_t) z)^{n_{k}-1} \prod _{l\ne k} (1-p_{l \rightarrow j}(\varvec{x}_t) + p_{l \rightarrow j}(\varvec{x}_t) z)^{n_{l}}. \end{aligned}$$

Taking \(z=1\) leads to the result. The mass probability function of the portfolio size \(N_{j,t}\)is given by

$$\begin{aligned} P(N_{j,t} = m_{j}\vert \varvec{N}_{t-1}=\varvec{n}) = \sum _{ \underset{ \text { s.t. } \sum \limits _k c_k = m_{j} }{ 0 \le c_1, \dots , c_{J} \le n } } \prod _{l=1}^J \left( {\begin{array}{c}n_{l}\\ c_j\end{array}}\right) (p_{l\rightarrow j}(\mathbf{x}_t))^{c_j} \left( 1- p_{l\rightarrow j}(\mathbf{x}_t) \right) ^{ n_{l} - c_j}. \end{aligned}$$

1.1.2 Properties of the Loss Model

Proof (Proof of Prop. 5)

Using assumptions A5, A6, A7, the moment generating function of \(S_{j,t}\) given that \(N_{j,t}=n_{j}\) using (5) is

$$\begin{aligned} \forall u, G^M_{S_{j,t}\vert N_{j,t}=n_{j}}(u) = E\left( e^{uS_{j,t}} \vert N_{j,t}=n_{j}\right) = E\left( \prod _{i=1}^{n_j} e^{uY_{i,t}}\right) = \left( G^M_{Y_{i,t}}(u)\right) ^{n_j}. \end{aligned}$$

Since \(Y_{i,t}\) is a compound distribution by (4), we get \(G^M_{Y_{i,t}}(u)= G^P_{M_{i,t}}( G^M_Z(u)).\) As the claim frequency belongs to the (ab, 0) class, the resulting distribution for total claim number can be easily derived, see Table 1. Again using assumptions A5, A6, A7, we have

$$\begin{aligned} \forall u, G^M_{S_{j,t} }(u) = E\left( E\left( e^{uS_{j,t}}\vert N_{j,t}\right) \right) = E\left( \left( G^M_{Y_{i,t}}(u)\right) ^{N_{j,t}} \right) =G^P_{N_{i,t}}\left( G^P_{M_{i,t}}\left( G^M_Z(u)\right)\right). \end{aligned}$$

Using Lemma 1, with \(f=G^P_{N_{i,t}}\) \(g=G^P_{M_{i,t}}\) and \(h=G^M_Z\), we set \(x=0\) in order to compute moments so that \(h^{(j)}(0)= (G^M_Z)^{(j)}(0) = E(Z^j)\), \(h(0)=1\), \(g^{(l)}(1)=E(M_{i,t}\dots (M_{i,t}-l+1))\), \(f^m(1)= E(N_{i,t}\dots (N_{i,t}-m+1))\). So we have

$$\begin{aligned} \frac{d^n G^M_{S_{j,t} }(0) }{dx^n}= & {} \sum _{m_j\in \mathbb N} \frac{n! E(N_{i,t}\dots (N_{i,t}-m_.+1)) }{ m_1!\,\cdots \,m_n!} \prod _{j=1}^n\left( \sum _{l_j\in \mathbb N} \frac{E(M_{i,t}\dots (M_{i,t}-l_.+1)) }{ l_1!\,\cdots \,l_j!} \right) ^{m_j} \\&\prod _{k=1}^j\left( \frac{E(Z^j) }{ k!}\right) ^{l_k m_j}, \end{aligned}$$

with \(m_.=m_1+\cdots +m_n\) and \(l_.=l_1+\cdots +l_j\) where the multiple summation is a finite set of integers, see Lemma 1. In particular, \(n=1\) leads to \(m_1=1\), \(l_1=1\). Hence \(E(S_{j,t})= \frac{E(N_{i,t}) }{ 1!} \left( \frac{E(M_{i,t}) }{ 1!} \right) ^{1} \left( \frac{E(Z) }{ 1!}\right) ^{1} = E(N_{i,t}) E(M_{i,t}) E(Z).\)

Using recursively the Faà di Bruno formula, we obtain the following lemma.

Lemma 1

Assuming f, g and h are nth-time differentiable, we have

$$\begin{aligned} \frac{d^n f(g(h(x)))}{dx^n} = \sum _{m_j\in \mathbb N} \frac{n! f^{(m_1+\cdots +m_n)}(g(h(x)))}{m_1!\,m_2!\,\cdots \,m_n!} \prod _{j=1}^n\left( \sum _{l_j\in \mathbb N} \frac{g^{(l_1+\cdots +l_j)}(h(x))}{l_1!\,\cdots \,l_j!} \right) ^{m_j} \prod _{k=1}^j\left( \frac{h^{(j)}(x)}{k!}\right) ^{l_k m_j}, \end{aligned}$$

where the multiple summation is over integers

$$\begin{aligned} \left\{ m_j\in \mathbb N, \sum _{j=1}^n j m_j=n \right\} , \left\{ l_k\in \mathbb N, \sum _{k=1}^j k l_k=j \right\} . \end{aligned}$$

Appendix 2

1.1 Proofs of Section 4

1.1.1 Properties of the Transition Probability

Proposition 14

Transition probability \(p_{l \rightarrow j}(\varvec{x})\) is a strictly decreasing function of \(x_j\) given \(\varvec{x}_{-j}\) and verifies \(0 < p_{l \rightarrow j}(\varvec{x}) < 1\).

Proof

The expression of \(p_{j \rightarrow k}\) can be rewritten as

$$\begin{aligned} p_{j \rightarrow k}(\varvec{x}) = p_{j \rightarrow j}(\varvec{x}) \left( \delta _{jk} + (1-\delta _{jk} ) e^{\kern 0.14emf_j(x_{j},x_{k}) } \right) , p_{j \rightarrow j}(x) = \frac{ 1 }{ 1 + \sum \limits _{l \ne j} e^{\kern 0.14emf_j(x_j,x_l) } }, \end{aligned}$$

with \(\delta _{ij}\) denoting the Kronecker delta where the summation is over \(l \in \{1, \dots , J\} \setminus \{ j \}\) and \(f_j\) is the price function. The price function \(f_j\) goes from \((t,u) \in \mathbb R^2 \mapsto f_j(t,u) \in \mathbb R\). Partial derivatives are denoted by \(\frac{ \partial f_j (t,u) }{ \partial t } = f^\prime_{j1}(t,u)\) and \(\frac{ \partial f_j (t,u) }{ \partial u } = f^\prime_{j2}(t,u)\). Derivatives of higher order use the same notation principle. The \(p_{j \rightarrow k}(\varvec{x})\) function has the good property to be infinitely differentiable. Since we have

$$\begin{aligned} \frac{ \partial }{ \partial x_i } \sum \limits _{l \ne j} e^{\kern 0.14em f_j(x_j,x_l) } = \delta _{ji} \sum \limits _{l \ne j} f^\prime_{j1}(x_j,x_l) e^{\kern 0.14em f_j(x_j,x_l) } + (1-\delta _{ji}) f^\prime_{j2}(x_j,x_l) e^{\kern 0.14em f_j(x_j,x_i) } , \end{aligned}$$

we deduce

$$\begin{aligned} \frac{ \partial p_{j \rightarrow j}(x) }{ \partial x_i }= & {} - \left( \sum _{l \ne j} f^\prime_{j1}(x_j,x_l) \lg _j^l(x) \right) p_{i\rightarrow j}(x) \delta _{ij} - f^\prime_{j2}(x_j,x_l) p_{j\rightarrow i}(x) p_{j \rightarrow j}(x) (1-\delta _{ij}) . \end{aligned}$$

Furthermore,

$$\begin{aligned} \frac{ \partial }{ \partial x_i } \left( \delta _{jk} + (1-\delta _{jk} ) e^{ \kern 0.14emf_j(x_j,x_k) } \right) = (1-\delta _{jk} ) \left( \delta _{ik} f^\prime_{j2}(x_j,x_k) e^{\kern 0.14em f_j(x_j,x_k) } + \delta _{ij} f^\prime_{j1}(x_j,x_k) e^{\kern 0.14em f_j(x_j,x_k) } \right) . \end{aligned}$$

Hence, we get

$$\begin{aligned} \frac{ \partial p_{j \rightarrow k}(x) }{ \partial x_i } =& - \delta _{ij} \left( \sum _{l \ne j} f^\prime_{j1}(x_j,x_l) p_{j \rightarrow l}(x) \right) p_{j \rightarrow k}(x) - (1-\delta _{ij}) f^\prime_{j2}(x_j,x_i) p_{j \rightarrow i}(x) p_{j \rightarrow k}(x) \\ &+ (1-\delta _{jk}) \left[ \delta _{ij} f^\prime_{j1}(x_j,x_k) p_{j \rightarrow k}(x) + \delta _{ik} f'_{j2}(x_j,x_k) p_{j \rightarrow k}(x) \right] . \end{aligned}$$

Let \(\phi _l\) be the family function \(x_j \mapsto p_{l \rightarrow j}(\varvec{x})\) for \(l=1,\dots ,J\). \(\phi _j\) has the following derivative

$$\begin{aligned} \phi _j^\prime(x_j) = - \left( \sum _{l \ne j} f^\prime_{j1}(x_j,x_l) p_{j \rightarrow l}(\varvec{x}) \right) p_{j \rightarrow j}(\varvec{x}). \end{aligned}$$

Since for the two considered price function, we have \(\bar{f}{^\prime_{j1}}(x_j,x_l) = \alpha _j /x_l>0\) and \(\tilde{f}{^\prime_{j1}}(x_j,x_l) = \tilde{\alpha }_j>0\), then the function \(\phi _j\) is strictly decreasing. For \(l\ne j\), the function \(\phi _l\) has the following derivative \(\phi _l^\prime(x_j) = f^\prime_{j2}(x_l, x_j) p_{l \rightarrow j}(\varvec{x}) ( 1- p_{l \rightarrow j}(\varvec{x})).\) Again, for the two considered price function, we have \(f^\prime_{j2}(x_j,x_l) = - \alpha _j x_j/x_l^2<0\) and \(\tilde{f}{^\prime_{j2}}(x_j,x_l) = - \tilde{\alpha }_j<0\). So, the function \(\phi _l\) is strictly decreasing.

Futhermore, the function \(\phi _l\) decreases from 1 to 0 such that \(\phi _l(x_j)\rightarrow 1\) (resp. \(\phi _l(x_j)\rightarrow 0\)) when \(x_j\rightarrow -\infty\) (resp. \(x_j\rightarrow -\infty\)). When \(i\ne j\), functions \(x_i \mapsto p_{i \rightarrow j}(x)\) are also strictly increasing. Let \(\overline{\underline{\varvec{x}}^{j}} =(\underline{x}, \dots , \underline{x}, \overline{x}, \underline{x}, \dots , \underline{x})\) and \(\underline{\overline{\varvec{x}}^{j}}=(\overline{x}, \dots , \overline{x}, \underline{x}, \overline{x}, \dots , \overline{x})\). We have

$$\begin{aligned} \forall \varvec{x}\in [\underline{x}, \overline{x}]^J, 0< p_{i \rightarrow j}(\underline{\overline{\varvec{x}}^{j}})< p_{i \rightarrow j}(\varvec{x})< p_{i \rightarrow j}(\overline{\underline{\varvec{x}}^{j}}) < 1. \end{aligned}$$

1.1.2 Properties of a Constant Regulated Price Vector

Proof (Proof of Prop. 6)

Using Proposition 3 and when \(\mathbf{x}=(x,\dots ,x)\) using (13), we have

$$\begin{aligned} P_\rightarrow =\left( \begin{matrix} p_{1 \rightarrow 1}&{} \frac{1-p_{1 \rightarrow 1}}{J-1} &{} \dots &{} \dots &{} \frac{1-p_{1 \rightarrow 1}}{J-1} \\ &{} \ddots \\ \dots &{} \frac{1-p_{j \rightarrow j}}{J-1} &{} p_{j \rightarrow j}&{} \frac{1-p_{j \rightarrow j}}{J-1} &{} \dots \\ &{}&{}&{} \ddots \\ \frac{1-p_{J \rightarrow J}}{J-1} &{} \dots &{} \dots &{} \frac{1-p_{J \rightarrow J}}{J-1} &{} p_{J \rightarrow J}\end{matrix}\right) \in \mathbb R^{J\times J}. \end{aligned}$$
(21)

We deduce that the probabilities appearing in the proof of Proposition 3 simplify to

$$\begin{aligned} \frac{n_j!}{c_{j1}!\dots c_{jJ}!} \left( p_{j \rightarrow j}\right) ^{c_{jj}} (p_{j \ne })^{c_{j1}} \dots \left( p_{j \ne }\right) ^{c_{jJ}}= & {} \frac{n_j!}{c_{j1}!\dots c_{jJ}!} \left( p_{j \rightarrow j}\right) ^{c_{jj}} \left( p_{j \ne }\right) ^{n_j - c_{jj}}. \end{aligned}$$

We get the desired result by summing over appropriate indexes.

Proof (Proof of Prop. 7)

For a constant price vector, identical players (\(p_{j \rightarrow j}=p_=\) and \(p_{j \ne }=p_{\ne }\)) and Proposition 4, the probability generating function is

$$\begin{aligned} G^P_{N_{j,t}\vert \varvec{N}_{t-1}=\varvec{n}}(z)= & {} (1-p_{j \rightarrow j}+ p_{j \rightarrow j}z)^{n_{j}} \prod _{l\ne j}(1-p_{\ne } + p_{\ne } z)^{n_{l}} \\= & {} (1-p_{j \rightarrow j}+ p_{j \rightarrow j}z)^{n_{j}} (1-p_{\ne } + p_{\ne } z)^{N-n_j}. \end{aligned}$$

\(N_{j,t}\vert \varvec{N}_{t-1}=\varvec{n}\) is a sum of two binomially distributed random variables \(\mathcal B(n_j, p_{j \rightarrow j})\) and \(\mathcal B(n-n_j, p_{j \ne })\).

Proof (Proof of Th. 1)

When \(\varvec{x}_t=\varvec{x}\), \((C_{i,t})_t\) is a Markov chain with a transition matrix \(P_\rightarrow (\varvec{x}_t)=P_\rightarrow\). When \(\varvec{x}=(x,\dots ,x)\) (13) leads to (21). Since the number of state is finite (J) and the Markov chain is irreducible by Prop. 14, there exists a unique invariant measure \(\mu\), see e.g. Norris (1997).

Let us consider the general matrix \(M\in \mathbb R^{J\times J}\) with general term \(M_{i,j} = a_i (1-\delta _{ij}) + (1-(J-1)a_i) \delta _{ij}\). Note that the rows of M equal 1 and M has only two different terms by row. The reversibility conditions for a measure \(\mu\) are

$$\begin{aligned} \left\{ \begin{array}{ll}\mu _1 M_{1,2} = \mu _2 M_{2,1} \\ \dots \\ \mu _1 M_{1,J} = \mu _J M_{J,1} \\ \end{array}\right. \Leftrightarrow \left\{ \begin{array}{ll}\mu _1 a_1/a_2 = \mu _2 \\ \dots \\ \mu _1 a_1/a_J = \mu _J. \\ \end{array}\right. \end{aligned}$$

Let \(a_{-i}^\Pi = \prod \limits _{j=1, j\ne i}^J a_j\). Using \(\mu _1+\dots +\mu _J=1\), we get by multiplying both sides by \(a_{-i}^\Pi\)

$$\begin{aligned} \mu _1 + \sum _{i>2} \mu _1 \frac{a_1}{a_i} =1 \Leftrightarrow \mu _1 = \frac{a_{-1}^\Pi }{\sum \limits _{i=1}^J a_{-i}^\Pi } \Leftrightarrow \mu = \left( \frac{a_{-1}^\Pi }{\sum \limits _{i=1}^J a_{-i}^\Pi }, \dots , \frac{a_{-J}^\Pi }{\sum \limits _{i=1}^J a_{-i}^\Pi }\right) . \end{aligned}$$

The measure \(\mu\) above is in detailed balance with M and also an invariant measure for M. Setting \(a_j = p_{j \ne }\) leads to the desired result. In the special case where \(p_{j \rightarrow j}\) are identical across insurers, \(p_{j \ne }= p_{\ne }\) is constant. Hence for all \(j=1,\dots ,J\)

$$\begin{aligned} a_{-i}^\Pi = \prod _{j\ne i} p_{j \ne }= (p_{\ne })^{J-1} \Rightarrow \mu _i = \frac{(p_{\ne })^{J-1}}{\sum \limits _{l=1}^J (p_{\ne })^{J-1}} = \frac{(p_{\ne })^{J-1}}{J \times (p_{\ne })^{J-1}} = \frac{1}{J}. \end{aligned}$$

Proof (Proof of Prop. 8)

Using (4) and Proposition 1, for large t, we have

$$\begin{aligned} P(\varvec{N}_t = \varvec{n}) = \frac{N!}{(c_1^\Pi +\dots +c_J^\Pi )^N} \prod _{j=1}^J \frac{(c_j^\Pi )^{n_j}}{n_j!}. \end{aligned}$$

The asymptotic marginal distribution is binomial \(\mathcal B(N, \mu _j)\) with \(P(N_{j,t} = m) = \left( {\begin{array}{c}N\\ m\end{array}}\right) (\mu _j)^m (1-\mu _j)^{N-m} .\) This leads to the desired result for the aggregate claim amount.

Appendix 3

1.1 Proofs of Section 5

Proof (Proof of Th. 2)

Since \(\sum _k p_{j \rightarrow k}= 1\), we get \(p_{j\ne } = (1-p_{j \rightarrow j}-p_{j\rightarrow 1})/(J-2)\), and \(p_{1\ne }=\frac{1-p_{1\rightarrow 1}}{J-1}\). We use the following notation

$$\begin{aligned} P_\rightarrow =\left( \begin{matrix} p_{1 \rightarrow 1}&{} p_{1\ne } &{} \dots \\ p_{2\rightarrow 1} &{} p_{2\rightarrow 2} &{} p_{2\ne } &{} \dots \\ p_{3\rightarrow 1} &{} p_{3\ne } &{} p_{3\rightarrow 3} &{} p_{3\ne } &{} \dots \\ &{}&{}&{} \ddots &{} \\ p_{J\rightarrow 1} &{} p_{J\ne } &{} \dots &{} p_{J\ne } &{} p_{J\rightarrow J} \\ \end{matrix}\right) = \left( \begin{matrix} a_1 &{} b_1 &{} \dots \\ b_2 &{} a_2 &{} c_2 &{} \dots \\ b_3 &{} c_3 &{} a_3 &{} c_3 &{} \dots \\ &{}&{}&{} \ddots &{} \\ b_J &{} c_J &{} \dots &{} c_{J} &{} a_J \\ \end{matrix}\right) . \end{aligned}$$
(22)

A first series of equation for the invariant measure is obtained from \(\mu ^\prime=\mu ^\prime P_\rightarrow\). Ignoring the first equation and subtracting the second equation from all others, we get

$$\begin{aligned} \left\{ \begin{array}{ll}\mu _2 = b_1 \mu _1 +a_2\mu _2 +\dots + c_J \mu _J \\ \mu _3 -\mu _2= (c_2-a_2)\mu _2+ (a_3-c_3)\mu _3 \\ \vdots \\ \mu _J -\mu _2= (c_2-a_2)\mu _2 + (a_J-c_J)\mu _J \end{array}\right. \Leftrightarrow \left\{ \begin{array}{ll}-b_1 \mu _1 =-\mu _2 +a_2\mu _2 + c_3\mu _3+\dots + c_J \mu _J \\ \mu _3(1-a_3+c_3) = (c_2-a_2+1)\mu _2 \\ \vdots \\ \mu _J(1-a_J+c_J) = (c_2-a_2+1)\mu _2. \end{array}\right. \end{aligned}$$

The \(J-2\) equations give \(\mu _j = \mu _2 \frac{c_2-a_2+1}{c_j-a_j+1}, j>2.\) Recalling that any row of M sums up to 1, \(a_i+b_i+c_i(J-2)=1\) for \(i\ne 1\), we have

$$\begin{aligned} \forall j=3,\dots , J, a_j = 1- c_j(J-2) - b_j \Rightarrow c_j-a_j+1 = (J-1)c_j +b_j =:d_j. \end{aligned}$$

For \(j=3,\dots , J\), \(\mu _j = \mu _2 \frac{d_2}{d_j}\). The first equation for \(\mu _1\) becomes

$$\begin{aligned} b_1 \mu _1 =\mu _2 -a_2\mu _2 - \sum _{j=3}^J c_j\mu _2 \frac{d_2}{d_j} \Leftrightarrow \mu _1 =\mu _2 \frac{b_2}{b_1} + \mu _2 \frac{d_2}{b_1} \sum _{j=3}^J\left(\frac{c_2}{d_2} - \frac{c_j}{d_j} \right). \end{aligned}$$

Using the condition \(\sum _i \mu _i=1\) yields to \(\mu _2 = \left( 1+ \frac{b_2}{b_1} + \frac{d_2}{b_1} \sum _{j=3}^J\left(\frac{c_2}{d_2} - \frac{c_j}{d_j} +\frac{b_1}{d_j}\right) \right) ^{-1}.\) Reintroducing the product notation \(d^\Pi _{-1,-j}= \prod _{l\ne 1, j} d_l\) yields the following reformulation

$$\begin{aligned} \mu _j = \frac{d^\Pi _{-1,-j}b_1}{ d^\Pi _{-1} + \sum \limits _{j=2}^Jd^\Pi _{-1,-j}(b_1-c_j) }, j> 2, \mu _1 =\frac{d^\Pi _{-1} + \sum \limits _{j=2}^Jd^\Pi _{-1,-j}(-c_j) }{ d^\Pi _{-1} + \sum \limits _{j=2}^Jd^\Pi _{-1,-j}(b_1-c_j) }. \end{aligned}$$

Let us go back to the original transition matrix (22) with \(a_1 = p_{1 \rightarrow 1}\), \(b_1 = p_{1\ne } = \frac{1-p_{1 \rightarrow 1}}{J-1}\), \(\forall j>1, a_j = p_{j\rightarrow j}\), \(b_j = p_{j\rightarrow 1}\), \(c_j = p_{j\ne }\). With \(d_j = (J-1)c_j+b_j = (J-1) p_{j\ne } +p_{j\rightarrow 1}\), we obtain the desired result. In the special case of identical insurers, we have \(\forall j \ne 1, p_{j\ne }=p_{2\ne }\) and \(p_{j\rightarrow 1}=p_{2\rightarrow 1}\). With \(d_j = d_2\Rightarrow d_{-1,-j}^\Pi = d_2^{J-2} \Rightarrow d_{-1}^\Pi = d_2^{J-1}\), we obtain the desired result.

Proof (Proof of Prop. 9)

Consider Insurer j is the cheapest, i.e. \(x_j < x_k\) for all \(k \ne j\). \(p_{k \rightarrow j}(x) > p_{k \rightarrow l}(x)\) for \(l\ne j\) given the initial portfolio sizes \(n_j\)’s are constant, since the change probability \(p_{k \rightarrow j}\) (for \(k\ne j\)) is a decreasing function (see Appendix 2). Using the stochastic order (\(\le _{\text {st}}\)), the convex order (\(\le _{\text {cx}}\)), the majorization order (\(\le _{\text {m}}\)), see (Shaked and Shanthikumar 2007, resp. Chap. 1, Chap. 3, p. 2), we can show a stochastic order of the portfolio size by applying the convolution property of the stochastic order J times: \(N_k(\varvec{x}) \le _{\text {st}}N_j(\varvec{x}) , \forall k \ne j.\)  

Let us consider the empirical loss average of an insurer with portfolio size n \(\overline{A}(n) = \frac{1}{n} \sum _{i=1}^{n} Y_i ,\) where \(Y_i\) denotes the total claim amount for Policy i. For \(n < \tilde{n}\), we define two policy numbers \(\varvec{a}_{n}, \varvec{b}_{\tilde{n}} \in \mathbb R^{ \tilde{n}}\) as

$$\begin{aligned} \varvec{b}_{\tilde{n}} = \left( \frac{1}{\tilde{n}}, \dots , \frac{1}{\tilde{n}} \right) \text { and } \varvec{a}_{ n} = \left( \underbrace{ \frac{1}{ n}, \dots , \frac{1}{ n} }_{\text {size } n} , \underbrace{ 0, \dots , 0 }_{\text {size } \tilde{n} - n} \right) . \end{aligned}$$

Since \(\varvec{b}_{\tilde{n}} \le _{\text {m}}\varvec{a}_{ n}\) and \((Y_i)_i\)’s are i.i.d. random variables, we have

$$\begin{aligned} \sum _i b_{\tilde{n}, i } Y_i \le _{\text {cx}}\sum _i a_{ n, i } Y_i \Leftrightarrow \sum _{i=1}^{\tilde{n}} \frac{1}{\tilde{n}} Y_i \le _{\text {cx}}\sum _{i=1}^{n} \frac{1}{n} Y_i \Leftrightarrow \overline{A}(\tilde{n}) \le _{\text {cx}}\overline{A}(n). \end{aligned}$$

Using Theorem 3.A.23 of Shaked and Shanthikumar (2007), except that for all \(\phi\) convex, \(E(\phi (\overline{A}(n)))\) is a decreasing function (rather an increasing function) of n and \(N_k(\varvec{x}) \le _{\text {st}}N_j( \varvec{x})\), we can show \(\overline{A}(N_j( \varvec{x})) \le _{\text {cx}}\overline{A}(N_k(\varvec{x})).\)  

Proof (Proof of Prop. 10)

Using Prop. 9, we have \(\sum _{i=1}^{\tilde{n}} \frac{1}{\tilde{n}} Y_i \le _{\text {cx}}\sum _{i=1}^{n} \frac{1}{n} Y_i.\) For all increasing convex functions \(\phi\), the function \(x\mapsto \phi (x+a)\) is still increasing and convex. Thus for all random variables XY such that \(X\le _{\text {icx}}Y\) and real numbers ab, \(a\le b\), we have

$$\begin{aligned} E(\phi (X+a)) \le E(\phi (X+b)) \le E(\phi (Y+b)) \Leftrightarrow a+X \le _{\text {icx}}b+Y. \end{aligned}$$

Consider Insurer j is the cheapest and \(x_j(1-e_j) \le x_k (1-e_k)\) and using the fact that \(X \le _{\text {cx}}Y\) is equivalent to \(-X \le _{\text {cx}}-Y\), we have \(uw_j(\varvec{x},\tilde{n}) \le _{\text {icx}}uw_k(\varvec{x},n) , \forall k \ne j.\) Using Theorem 3.A.23 of Shaked and Shanthikumar (2007), except that for all \(\phi\) convex, \(E(\phi (uw_j( \varvec{x}, n)))\) is a decreasing function of n and \(N_k(\varvec{x}) \le _{\text {st}}N_j( \varvec{x})\), we can show \(UW_j = uw_j(\varvec{x},N_j( \varvec{x})) \le _{\text {icx}}uw_k(\varvec{x}, N_k(\varvec{x})) = UW_k.\)  

Appendix 4

1.1 Proofs of Section 6

Proof (Proof of Prop. 11)

Assuming \(\# J_t \ge 2\), since the strategy set is \([\underline{x},\overline{x}]^{J_t}\), it guarantees the market proxy \(m_j= m_j(\varvec{x})\) or \(m_j= m_j(\varvec{x},\varvec{n})\) to be positive. Given \(\varvec{x}_{-j,t}\), the function \(x_{j,t}\mapsto O_j(\varvec{x}_t)\) is a quadratic (hence concave) function. Given that the constraint functions (11) are linear, by Theorem 1 of Rosen (1965), the existence of a premium equilibrium at time t is guaranteed. The proof of uniqueness is exactly the same as in Dutang et al. (2013). Omitting the time index t, consider a generic objective function

$$O_j(\varvec{x}) = \left( a_j - b_j \frac{x_j}{m_j(\varvec{x})}\right) (x_j-c_j), \text {with } m_j(\varvec{x}) = \sum _{i\ne j} w_i x_i,$$

with known weights \(w_i>0\) and positive constant \(a_j,b_j,c_j>0\). In the case of no active constraint functions. Similarly to Dutang et al. (2013), if \(\varvec{x}^\star\) is a Nash equilibrium, \(\varvec{x}^\star\) must verify

$$\forall j, \nabla _{x_j} O_j(\varvec{x}^\star ) = 0 \Leftrightarrow M_1M_2 \varvec{x}= v,$$

with

$$M_1 =\left( \begin{matrix}2b_1/w_1 &{} -a_1 &{} \dots \\ -a_2 &{} 2b_2/w_2 &{} -a_2 &{} \dots \\ &{}&{} \ddots &{} \\ &{}\dots &{} -a_J &{} 2b_J/w_J \end{matrix}\right) , M_2= \left( \begin{matrix}w_1 &{} 0 &{} \dots \\ &{} \ddots \\ \dots &{} 0 &{} w_J \end{matrix}\right) , v = \left( \begin{matrix} b_1 c_1\\ \vdots \\ b_J c_J \end{matrix}\right) .$$

NB: When the market proxy is the arithmetic mean (8), we set \(w_j = 1\) and \(b_j=\beta _j(J-1)\). When the market proxy is the weighted mean (9), we set \(w_j = n_j\) and \(b_j=\beta _j(N-n_j)\).

Remark 14

Getting a linear system for the premium equilibrium, we are looking for a necessary and sufficient condition. The linear system for the premium equilibrium has a solution when the determinant of M is non null. Since \(\det {M}=\det {M_1}\det {M_2}\), \(M_2\) being diagonal yields a positive determinant \(\det {M_2}=\prod _i w_i >0\) for the weights considered. So \(\det {M_0}=0\) is equivalent to \(\det {M_1}=0\).

Using Lemma 2, we have with \(a_j=1+\beta _j\) and \(b_j=\beta _j\)

$$\begin{aligned} \det {M_1}= & {} \frac{2b_1}{w_1} \prod _{k\ne 1} (a_k+2b_k/w_k) - \sum _{j=2}^J a_j \prod _{k\ne j} (a_k+2b_k/w_k) . \end{aligned}$$

Using \(\tilde{\beta }_j= 1+\beta _j+2\beta _jw_{-j}^\Sigma /w_j\), \(w_{-j}^\Sigma =\sum _{k\ne j} w_k\), \(\tilde{\beta }_{-j}^\Pi =\prod _{k\ne j} \tilde{\beta }_k\),

$$\begin{aligned} \det {M}=0 \Leftrightarrow 2\beta _1 w_{-1}^\Sigma \tilde{\beta }_{1} = w_1\sum _{j=2}^J (1+\beta _j) \tilde{\beta }_{j} . \end{aligned}$$

There are many solutions to this equation, but there is a unique solution when \(w_j=w\) is constant and \(\beta _j\)’s are all identical. Say \(\beta _j=\beta\) leading to \(\tilde{\beta }_j = 1+\beta +2\beta (J-1)\). Hence \(\det {M}=0\) yields to \(\beta =1\)

A sufficient condition for the linear system to have a solution is M to be diagonally dominant. That is \(\forall j=1,\dots , J\),

$$\begin{aligned} |2b_j|> \sum _{k\ne j} | -a_jw_k| \Leftrightarrow 2b_j> a_j \sum _{k\ne j} w_k \Leftrightarrow 2b_j > a_j w_{-j}^\Sigma \end{aligned}$$

In the case of objective function (10), we choose \(a_j=1+\beta _j\), \(b_j=\beta _j w_{-j}^\Sigma\). So the sufficient condition is \(2\beta _j w_{-j}^\Sigma> (1+\beta _j)w_{-j}^\Sigma \Leftrightarrow \beta _j >1.\) In that case, one can check that the determinant \(\det {M_1}\) is strictly positive. This fact was also seen in Dutang et al. (2013).

Lemma 2

Consider the following multi-diagonal matrix for \(n\ge 2\)

$$\begin{aligned} M_n= \left( \begin{matrix}u_1 &{} v_1 &{} \dots \\ v_2 &{} u_2 &{} v_2 &{} \dots \\ &{} &{} \ddots \\ &{}\dots &{}v_{n-1} &{} u_{n-1} &{}v_{n-1} \\ &{}&{}\dots &{}v_n &{} u_n \end{matrix}\right) . \end{aligned}$$

With \(w_1=u_1\) and \(w_j=v_j, \forall j=2,\dots ,n\), the determinant is given by \(\det {M_n} =(-1)^{n+1} \sum _{j=1}^n w_j \prod _{k\ne j} (v_k-u_k).\)

Proof

If \(\det {M_n}=(-1)^{n+1} \sum _{j=1}^n w_j \prod _{k\ne j} (v_k-u_k)\), then

$$\begin{aligned} \det {M_{n+1}}= & {} (u_{n+1}-v_{n+1}) \det {M_{n}} +(-1)^{n+1} (v_1-u_1) \dots (v_{n}-u_{n})v_{n+1} \\= & {} (u_{n+1}-v_{n+1}) (-1)^{n+1} \sum _{j=1}^n w_j \prod _{k\ne j} (v_k-u_k) +(-1)^{n+1} (v_1-u_1) \dots (v_{n}-u_{n})v_{n+1} \\= & {} (-1)^{n+2} \sum _{j=1}^{n+1} w_j \prod _{k\ne j} (v_k-u_k). \end{aligned}$$

For \(n=2\), \(\det {M_2} =u_1u_2 - v_1v_2 = (u_2-v_2) u_1 +(-1)^{2+1} (v_1-u_1)v_2.\)

Proof (Proof of Prop. 13)

Using Proposition 14, we have

$$\begin{aligned} 0< p_{i \rightarrow j}(\underline{\varvec{x}}^{j-})< p_{i \rightarrow j}(\varvec{x})< p_{i \rightarrow j}(\overline{\varvec{x}}^{j}_-) < 1, \end{aligned}$$

for all \(\mathbf{x}\in [\underline{x}, \overline{x}]^J\). Taking supremum and infimum on player j, we get \(0 < \underline{p}_l= \underset{j}{\inf } p_{i \rightarrow j}(\underline{\mathbf{x}}^{j-})\) and \(\underset{j}{\sup }~p_{i \rightarrow j}(\overline{\mathbf{x}}^{j}_-) = \overline{p}_l < 1.\) Using the proof of Th. 4 in Appendix 1, we have

$$\begin{aligned}P\left( N_{j,t}(\mathbf{x}) = m_j | N_{j,t-1}> 0 , Card(J_{t-1})> 1 \right) &= \sum _{ \underset{ \text { s.t. } \sum _l \tilde{m}_l = m_j }{ \tilde{m}_1, \dots , \tilde{m}_{J_{t-1}}\ge 0 } } \prod _{ l \in J_{t-1} } \left( {\begin{array}{c}n_{l,t-1}\\ \tilde{m}_l\end{array}}\right) p_{i \rightarrow j}(\mathbf{x})^{\tilde{m}_l} \left( 1- p_{i \rightarrow j}(\mathbf{x}) \right) ^{ n_{l,t-1} - \tilde{m}_j} \\& > \sum _{ \underset{ \text { s.t. } \sum _l \tilde{m}_l = m_j }{ \tilde{m}_1, \dots , \tilde{m}_{J_{t-1}}\ge 0 } } \prod _{ l \in J_{t-1} } \left( {\begin{array}{c}n_{l,t-1}\\ \tilde{m}_l\end{array}}\right) \underline{p}_l^{\tilde{m}_l} (1- \overline{p}_l)^{ n_{l,t-1} - \tilde{m}_j} = \xi > 0. \end{aligned}$$

Therefore,

$$\begin{aligned}P(Card(J_t) = 0 | Card(J_{t-1})> 1) &\ge P\left( \forall j \in J_{t-1}, N_{j,t}(\varvec{x})> 0, K_{j,t-1} + N_{j,t}(\varvec{x}) x^\star _{j,t}(1-e_j)< \sum _{i=1}^{N_{j,t}(\varvec{x}) } Y_i | Card(J_{t-1})> 1 \right) \\& \ge \sum _{ m_j =1 }^{N} P_t\left( N_{j,t}(\varvec{x}) = m_j | Card(J_{t-1})> 1 \right) P\left( K_{j,t-1} + m_j x^\star _{j,t}(1-e_j)< \sum _{i=1}^{m_j } Y_i \right) \\& > \sum _{ m_j =1 }^{N} \xi P\left( K_{j,t-1} + m_j x^\star _{j,t}(1-e_j) < \sum _{i=1}^{m_j } Y_i \right) =\bar{\xi }> 0. \end{aligned}$$

Thus, we have

$$\begin{aligned}P(Card(J_t)> 1 | Card(J_{t-1})> 1) = & \ 1- P(Card(J_t) = 0 | Card(J_{t-1})> 1) \\& -P(Card(J_t)= 1 | Card(J_{t-1})> 1) \\ \le& \ 1- P(Card(J_t) = 0 | Card(J_{t-1}) > 1) \\ < &\ 1- \bar{\xi }< 1. \end{aligned}$$

By successive conditioning, we get

$$\begin{aligned} P(Card(J_t)> 1 ) = P(Card(J_0)> 1) \prod _{s=1}^t P(Card(J_s)> 1 | Card(J_{s-1}) > 1) < \left( 1- \bar{\xi }\right) ^t. \end{aligned}$$

So, the probability \(P(Card(J_t) > 1 )\) decreases geometrically as t increases.

Proof (Proof of Prop. 12)

In a regulated market (\(x_{j,t}^\star =x_j\)), using Theorems 1 and 2, the asymptotic distribution of \(\varvec{N}_t\) is a multinomial distribution. Hence the leadership probability is independent of initial condition \(\phi _j(k_j,n_j)=\phi _j\). Using the probability mass function leads to the desired result.

See Table 7, 8 and 9

Table 7 Parameters of the lapse model
Table 8 Parameters of the loss model PLN
Table 9 Parameters of insurers

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mouminoux, C., Dutang, C., Loisel, S. et al. On a Markovian Game Model for Competitive Insurance Pricing. Methodol Comput Appl Probab 24, 1061–1091 (2022). https://doi.org/10.1007/s11009-021-09906-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11009-021-09906-1

Keywords

Mathematics Subject Classification

Navigation