Skip to main content
Log in

A Level-1 Limit Order Book with Time Dependent Arrival Rates

  • Published:
Methodology and Computing in Applied Probability Aims and scope Submit manuscript

Abstract

We propose a simple stochastic model for the dynamics of a limit order book, extending the recent work of Cont and de Larrard (SIAM J Financial Math 4(1), 1–25 2013), where the price dynamics are endogenous, resulting from market transactions. We also show that the conditional diffusion limit of the price process is the so-called Brownian meander.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz M, Stegun IE (1972) Handbook of mathematical functions with formulas, graphs, and mathematical tables, volume 55 of applied mathematics series. National bureau of standards, tenth edition

  • Billingsley P (1995) Probability and measure. Wiley series in probability and mathematical statistics, 3rd edn. Wiley, New York. A Wiley-Interscience Publication

    MATH  Google Scholar 

  • Caravenna F, Chaumont L (2008) Invariance principles for random walks conditioned to stay positive. Ann Inst Henri Poincaré Probab Stat 44(1):170–190

    Article  MathSciNet  MATH  Google Scholar 

  • Cartea Á, Jaimungal S, Penalva J (2015) Algorithmic and high-frequency trading. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Cont R, de Larrard A (2013) Price dynamics in a Markovian limit order market. SIAM J Financial Math 4(1):1–25

    Article  MathSciNet  MATH  Google Scholar 

  • Durrett R (1996) Probability: Theory and examples, 2nd edn. Duxbury Press, Belmont

    MATH  Google Scholar 

  • Durrett RT, Iglehart DL, Miller DR (1977) Weak convergence to Brownian meander and Brownian excursion. Ann Probab 5(1):117–129

    Article  MathSciNet  MATH  Google Scholar 

  • Feller W (1971) An introduction to probability theory and its applications, volume II of Wiley series in probability and mathematical statistics, 2nd edn. Wiley, New York

    Google Scholar 

  • Olver FW, Lozier DW, Boisvert RF, Clark CW (2010) NIST Handbook of mathematical functions. Cambridge University Press, New York

    MATH  Google Scholar 

  • Revuz D, Yor M (1999) Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften [Fundamental principles of mathematical sciences], 3rd edn. Springer, Berlin

    Google Scholar 

  • Smith E, Farmer JD, Gillemot L, Krishnamurthy S (2003) Statistical theory of the continuous double auction. Quantitative Finance 3(6):481–514

    Article  MathSciNet  MATH  Google Scholar 

  • Swishchuk A, Cera K, Schmidt J, Hofmeister T (2016) General semi-Markov model for limit order books: theory, implementation and numerics. arXiv:1608.05060

  • Swishchuk AV, Vadori N (2017) A semi-Markovian modeling of limit order markets. SIAM Journal on Financial Mathematics. (in press)

  • Van Leeuwaarden JS, Raschel K, et al (2013) Random walks reaching against all odds the other side of the quarter plane. J Appl Probab 50(1):85–102

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Rémillard.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research is supported by the Montreal Institute of Structured Finance and Derivatives, the Natural Sciences and Engineering Research Council of Canada, the Social Sciences and Humanities Research Council of Canada, and the Australian Research Council.

Appendices

Appendix A: Auxiliary Results

Proposition A.1

Suppose thatVn = X1 + ⋯ + Xn, where the variablesXiare i.i.d. with\(xP(X_{i} > x) \stackrel {x\to \infty }{\to } c \in (0,\infty )\).Then\(\frac {V_{n}}{n\log {n}} \stackrel {Pr}{\to } c\), asn.

Proof

First, for any s > 0 and T > 0,

$$ s {\int}_{T}^{\infty} \frac{e^{-sx}}{x} dx = s {\int}_{sT}^{\infty} \frac{e^{-y}}{y} dy = - s\log(Ts) e^{-Ts} + s {\int}_{Ts}^{\infty} \log(y) e^{-y}dy, $$

so as s → 0, \( s {\int }_{T}^{\infty } \frac {e^{-sx}}{x} dx \sim -s\log {s}\). Next, for any non negative random variable X and any s ≥ 0,

$$ \mathbb{E}\left[e^{-s X} \right] = 1 - s{\int}_{0}^{\infty} P(X>x)e^{-sx} dx. $$

As a result, if P(X > x) ∼ c/x, as x, then, as s → 0,

$$ \mathbb{E}\left[e^{-s X} \right] = 1 +c s \log{s} + o(s\log{s}). $$

Therefore, setting an = n log n, one obtains, for a fixed s > 0,

$$ \begin{array}{@{}rcl@{}} \mathbb{E}\left[e^{-s V_{n}/a_{n}} \right] &=& \left[ \mathbb{E}\left[e^{-s X_{1}/a_{n}} \right] \right]^{n} \\ &=& \left\{1 - \frac{sc}{a_{n}} \log(sa_{n}) + o\left( log(a_{n})/a_{n}\right) \right\}^{n} \\ &\stackrel{n\to\infty}{\to}& e^{-cs}, \end{array} $$

since \(\frac {ns}{a_{n}} \log (sa_{n}) \to s\) as n. Hence, \(V_{n}/a_{n} \stackrel {Pr}{\to } c\), as n. □

Proposition A.2

Suppose that\(V_{n}/f(n) \stackrel {Pr}{\to } c\), asn, wheref(n) →is regularly varying of orderα. DefineNt = max{n ≥ 0; Vnt} and suppose that for some function g on (0,),fg(t) ∼ gf(t) ∼ t, ast. Then\(N_{t}/g(t) \stackrel {Pr}{\to } c^{-1/\alpha }\).

Proof

The proof is similar to the proof of the renewal theorem in Durrett (1996)[Theorem 7.3]. By definition, \(V_{N_{t}} \le t < V_{N_{t}+1}\). As a result,

$$ \frac{V_{N_{t}}}{f(N_{t})} \le \frac{t}{f(N_{t})} < \frac{V_{N_{t}}}{f(N_{t}+1)} \frac{f(N_{t}+1)}{f(N_{t})}. $$

By hypothesis, Vn/f(n) converges in probability to c ∈ (0,), as n. Also, since Vn is finite for any \(n\in {\mathbb {N}}\), it follows that Nt converges in probability to + as t. Next, since f(n + 1)/f(n) → 1 as n, it follows that as t, f(Nt)/t converges in probability to \(\frac {1}{c}\). Also, g is regularly varying of order 1/α, so one may conclude that \(N_{t}/g(t) \stackrel {Pr}{\to } c^{-1/\alpha }\). □

Remark A.3

If f(t) = t log t, then α = 1 and one can take g(t) = t/ log t.

Proposition A.4

Set\(\psi _{\lambda }(t,x) ={\int }_{t}^{\infty } \frac {1}{u}I_{x}(2u\lambda )e^{-2u\lambda }du\), for anyt, x, λ > 0. Then there exists a constant C so that for anyx, λ > 0, and any\(t\ge \frac {1}{2\lambda }\),\( \psi _{\lambda }(t,x) \le \frac {C}{\sqrt {2\lambda t}}. \)

Proof

First, note that ψλ(t, x) = ψ1/2(2λt, x). It is well-known that

$$ \begin{array}{@{}rcl@{}} I_{x}(z) &=&\frac{1}{\pi}{\int}_{0}^{\pi} e^{z\cos\theta}\cos(x\theta)d\theta \le \frac{1}{\pi}{\int}_{0}^{\pi} e^{z\cos\theta}d\theta \\ & \le & \frac{1}{2}+ \frac{1}{\pi}{{\int}_{0}^{1}} \frac{e^{zs}}{\sqrt{1-s^{2}}}ds. \end{array} $$

Next, set \( E_{1}(u):={\int }_{u}^{\infty }\frac {e^{-w}}{w} dw\), u > 0. Then

$$ \begin{array}{@{}rcl@{}} \psi_{1/2}(t,x) &\le & {\int}_{t}^{\infty} \frac{e^{-u}}{u} \left\{\frac{1}{2}+ \frac{1}{\pi}{{\int}_{0}^{1}} \frac{e^{us}}{\sqrt{1-s^{2}}}ds\right\}du\\ &=& \frac{1}{2}E_{1}(t) +\frac{1}{\pi}{\int}_{t}^{\infty}{{\int}_{0}^{1}} \frac{e^{-su}}{u\sqrt{s(2-s)}}ds du\\ &=& \frac{1}{2}E_{1}(t) +\frac{1}{\pi}{{\int}_{0}^{1}} \frac{E_{1}(st)}{\sqrt{s(2-s)}}ds.\\ &=& \frac{1}{2}E_{1}(t) +\frac{1}{\pi}{{\int}_{0}^{t}} \frac{E_{1}(s)}{\sqrt{s(2t-s)}}ds. \end{array} $$

According to Olver et al (2010, Section 6.8.1), E1(u) ≤ eu ln (1 + 1/u) for any u > 0. Furthermore, ln(1 + x) ≤ x and ln(1 + x) ≤ x2/5 for any x ≥ 0. As a result,

$$ \begin{array}{@{}rcl@{}} \psi_{1/2}(t,x) &\le & \frac{e^{-t}}{2t} +\frac{t^{-1/2}}{\pi}{{\int}_{0}^{t}} s^{-9/10} e^{-s}ds \le \frac{e^{-t}}{2t} +\frac{{\Gamma}\left( \frac{1}{10}\right)}{\pi t^{1/2}} \le Ct^{-1/2} \end{array} $$

for any t ≥ 1, where \(C = \frac {e^{-1}}{2}+ \frac {{\Gamma }\left (\frac {1}{10}\right )}{\pi }\). □

Appendix B: Proofs

Proof of Lemma 3.4

From Olver et al (2010)[Formula 10.30.4], for fixed ν, \( I_{\nu }(z)\sim \frac {e^{z}}{\sqrt {2\pi z}}\) as z. Also, from Abramowitz and Stegun (1972, p. 376), \( I_{n}(z)= \frac {1}{\pi }{\int }_{0}^{\pi } e^{z \cos {\theta }}\cos (n\theta )d\theta \) , so for any \(x\in {\mathbb {N}}\), In(z) ≤ ez. Thus, as T,

$$ \begin{array}{@{}rcl@{}} \mathbb{P}_{x}[\sigma_{Y}> T]&= &\left( \frac{\mu}{\lambda}\right)^{x/2}{\int}_{T}^{\infty}\frac{x}{s}I_{x}\left( 2s\sqrt{\lambda\mu}\right)e^{-s(\lambda+\mu)}ds\\ &\sim &\left( \frac{\mu}{\lambda}\right)^{x/2}{\int}_{T}^{\infty}\frac{x}{s} \frac{e^{2s\sqrt{\lambda\mu}}}{\sqrt{4s\pi\sqrt{\lambda\mu}}}e^{-s(\lambda+\mu)}ds\\ &\sim &\left( \frac{\mu}{\lambda}\right)^{x/2} \frac{x}{2\sqrt{\pi\sqrt{\lambda\mu}}} {\int}_{T}^{\infty}s^{-3/2}e^{-s{\mathcal{C}}}ds. \end{array} $$

Also, for any \(x\in {\mathbb {N}}\),

$$ \mathbb{P}_{x}[\sigma_{Y}> T] \le x \left( \frac{\mu}{\lambda}\right)^{x/2} {\int}_{T}^{\infty}s^{-1}e^{-s{\mathcal{C}}}ds. $$
(17)

Consequently, if λ = μ, \({\mathcal {C}}=0\) and

$$ \mathbb{P}_{x}[\sigma_{Y}> T] \sim \frac{x}{2\lambda\sqrt{\pi}} {\int}_{T}^{\infty}s^{-3/2}ds \sim \frac{x}{2\lambda\sqrt{\pi}} \frac{2}{\sqrt{T}} \sim \frac{x}{\lambda\sqrt{\pi T}}. $$

This agrees with the result proved in Cont and de Larrard (2013). However, if λ < μ, using the change of variable \(u = s{\mathcal {C}}\), one gets

$$ \begin{array}{@{}rcl@{}} \mathbb{P}_{x}[\sigma_{Y}> T] &\sim& {\mathcal{C}}^{1/2}\left( \frac{\mu}{\lambda}\right)^{x/2} \frac{x}{2\sqrt{\pi\sqrt{\lambda\mu} } } {\int}_{T{\mathcal{C}}}^{\infty}{u^{-3/2}}e^{-u} du \\ &\sim& \left( \frac{\mu}{\lambda}\right)^{x/2} \frac{x}{\sqrt{\pi\sqrt{\lambda\mu}}} \left[\frac{e^{-T{\mathcal{C}}}}{\sqrt{T}} - \sqrt{{\mathcal{C}}} {\Gamma}\left( \frac{1}{2},T{\mathcal{C}}\right)\right]. \end{array} $$

To compute the expectation in the case where λ = μ, note that for large enough T, \( \mathbb {E}_{x}\left [\sigma _{Y}\right ]= {\int }_{0}^{\infty } \mathbb {P}_{x}[\sigma _{Y}> t] dt \geq \frac {x}{2\lambda \sqrt {\pi }} {\int }_{T}^{\infty } \frac {1}{\sqrt {t}}dt = \infty \), whereas if λ < μ, for a sufficiently large T, there are finite constants C1 and C2 such that for any \(0 \le \theta <{\mathcal {C}}\),

$$ \begin{array}{@{}rcl@{}} \mathbb{E}_{x}\left[e^{\theta\sigma_{Y}} \right]&=& 1+ \theta {\int}_{0}^{\infty} e^{\theta t} \mathbb{P}_{x}[\sigma_{Y}> t] dt \leq C_{1} + \theta C_{2}{\int}_{T}^{\infty} e^{-t({\mathcal{C}}-\theta)} dt\\ &=&C_{1} + C_{2} \frac{e^{-T({\mathcal{C}}-\theta)}}{({\mathcal{C}}-\theta)} <\infty. \end{array} $$

Proof of Proposition 4.1

Let Fn, Q(t; x, y) and Fn, L(t; x, y) denote the cdf of \({S^{n}_{Q}}\) and \({S^{n}_{L}}\), respectively, starting from z0 = (x, y), with densities \(f_{n,\mathcal {Q}}(t;z_{0})\) and \(f_{n,\mathcal {L}}(t;z_{0})\), where Fn, Q(⋅; z0) is the convolution of F1,Q (n − 1) times with F1,Q(⋅; z − 0). The result will be proven by induction. The base case n = 1 is given in Corollary 3.7. Assume the result is true for any \(m\leq n\in \mathbb {N}\). Then by Corollary 3.7 and the induction hypothesis,

$$ F_{{\mathcal{L}}}(t;x,y)=F_{{\mathcal{Q}}}(A_{t};x,y) \text{ and } f_{n,{\mathcal{L}}}(t;x,y)=f_{n,{\mathcal{Q}}}(A_{t};x,y)\alpha_{t}. $$
(2)

Also, by the definition of τn and Vn, under Assumption 2, if z0 = (x, y), then

$$ \begin{array}{@{}rcl@{}} F_{n,{\mathcal{L}}}(t;z_{0}) &=& \mathbb{P}_{{\mathcal{L}}}[V_{n+1} \leq t | q_{0} = z_{0} ]=\mathbb{P}_{{\mathcal{L}}}[V_{n}\leq t, \tau_{n+1}\leq t-V_{n} | q_{0}=z_{0}]\\ &=& \sum\limits_{z} f(z) {{\int}_{0}^{t}} \mathbb{P}_{{\mathcal{L}}}[\tau_{n+1}\leq t-u| q_{u}=z]f_{n,{\mathcal{L}}}(u;z_{0})du\\ &=& \sum\limits_{z} f(z){{\int}_{0}^{t}} \mathbb{P}_{{\mathcal{Q}}}\left[\tau_{n+1}\leq A_{t-u}^{(n+1)}|q_{u}=z\right]f_{n,{\mathcal{Q}}}(A_{u};z_{0})\alpha_{u} du\\ &=&{{\int}_{0}^{t}} F_{1,{\mathcal{Q}}}(A_{t}-A_{u})f_{n,{\mathcal{Q}}}(A_{u};z_{0})\alpha_{u} du = {\int}_{0}^{A_{t}} F_{1,{\mathcal{Q}}}(A_{t}-u)f_{n,{\mathcal{Q}}}(u;z_{0}) du\\ &=&{\int}_{0}^{A_{t}} F_{1,{\mathcal{Q}}}(A_{t}-u)dF_{n,{\mathcal{Q}}}(u;z_{0}) ={\int}_{0}^{A_{t}} F_{n,{\mathcal{Q}}}(A_{t}-u)dF_{1,{\mathcal{Q}}}(u;z_{0})\\ &=&\mathbb{P}_{{\mathcal{Q}}}\left[V_{n+1} \leq A_{t}| q_{0}=z_{0}\right], \end{array} $$

where we used the fact that for any s ≥ 0, α(n+ 1)(s) = α(s + u) given Vn = u, so \(A^{(n+1)}(t) = {{\int }_{0}^{t}} \alpha (s+u)ds = A_{t+u}-A_{u}\). Furthermore, in the last equality we used the fact that for X and Y, non-negative independent random variables,

$$ F_{X+Y}(t)=\mathbb{P}[X+Y\leq t]=F_{X}*F_{Y}(t)={{\int}_{0}^{t}}F_{X}(t-x)dF_{Y}(x), $$

with FX and FY denoting the cdfs of X and Y. Furthermore, starting q0 from distribution f, one obtains that \(\mathbb {P}_{{\mathcal {L}}}[V_{n} \le t] = \mathbb {P}_{{\mathcal {Q}}}[V_{n} \le A_{t}]\). □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chávez-Casillas, J.A., Elliott, R.J., Rémillard, B. et al. A Level-1 Limit Order Book with Time Dependent Arrival Rates. Methodol Comput Appl Probab 21, 699–719 (2019). https://doi.org/10.1007/s11009-019-09715-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11009-019-09715-7

Keywords

Mathematics Subject Classification (2010)

Navigation