Skip to main content
Log in

Approximation of Sojourn Times of Gaussian Processes

  • Published:
Methodology and Computing in Applied Probability Aims and scope Submit manuscript

Abstract

We investigate the tail asymptotic behavior of the sojourn time for a large class of centered Gaussian processes X, in both continuous- and discrete-time framework. All results obtained here are new for the discrete-time case. In the continuous-time case, we complement the investigations of Berman (Commun Pure Appl Math 38(5):519–528, 1985a and Probab Theory Relat Fields 20(1):113–124, 1987) for non-stationary X. A by-product of our investigation is a new representation of Pickands constant which is important for Monte-Carlo simulations and yields a sharp lower bound for Pickands constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler RJ (1990) An introduction to continuity, extrema, and related topics for general Gaussian processes, vol. 12 of Lecture Notes-Monograph Series. Institute of Mathematical Statistics, Hayward, California

  • Adler RJ, Taylor JE (2007) Random fields and geometry. Springer Monographs in Mathematics. Springer, New York

    Google Scholar 

  • Aldous D (1989) Probability approximations via the Poisson clumping heuristic, vol. 77 of Applied Mathematical Sciences. Springer-Verlag, New York

    Book  Google Scholar 

  • Arendarczyk M (2017) On the asymptotics of supremum distribution for some iterated processes. Extremes 20(2):451–474

    Article  MathSciNet  Google Scholar 

  • Bai L, Dȩbicki K., Hashorva E, Luo L (2018) On generalised Piterbarg constants. Methodol Comput Appl Probab 20(1):137–164

    Article  MathSciNet  Google Scholar 

  • Berman SM (1973) Excursions of stationary Gaussian processes above high moving barriers. Annals Probab 1(3):365–387

    Article  MathSciNet  Google Scholar 

  • Berman SM (1982) Sojourns and extremes of stationary processes. Annals Probab 10(1):1–46

    Article  MathSciNet  Google Scholar 

  • Berman SM (1985a) Sojourns above a high level for a Gaussian process with a point of maximum variance. Commun Pure Appl Math 38(5):519–528

    Article  MathSciNet  Google Scholar 

  • Berman SM (1985b) The maximum of a Gaussian process with nonconstant variance. Ann Inst H Poincaré Probab Statist 21(4):383–391

  • Berman SM (1987) Extreme sojourns of a Gaussian process with a point of maximum variance. Probab Theory Relat Fields 74(1):113–124

    Article  MathSciNet  Google Scholar 

  • Berman SM (1992) Sojourns and extremes of stochastic processes. The Wadsworth & Brooks/Cole Statistics/Probability Series, Pacific Grove CA: Wadsworth & Brooks/Cole Advanced Books & Software

  • Berman SM, Kôno N (1989) The maximum of a Gaussian process with nonconstant variance: a sharp bound for the distribution tail. Ann Probab 17(2):632–650

    Article  MathSciNet  Google Scholar 

  • Bingham NH, Goldie CM, Teugels JL (1989) Regular variation, vol. 27 of Encycolpedia of Mathematics and its Applications. Cambridge University Press, Cambridge

    Google Scholar 

  • Chan HP, Lai TL (2006) Maxima of asymptotically Gaussian random fields and moderate deviation approximations to boundary crossing probabilities of sums of random variables with multidimensional indices. Ann Probab 34(1):80–121

    Article  MathSciNet  Google Scholar 

  • Cheng D (2017) Excursion probabilities of isotropic and locally isotropic Gaussian random fields on manifolds. Extremes 20(2):475–487

    Article  MathSciNet  Google Scholar 

  • Dȩbicki K, Kisowski P (2008) A note on upper estimates for Pickands constants. Statist Probab Lett 78(14):2046–2051

    Article  MathSciNet  Google Scholar 

  • Dȩbicki K, Hashorva E (2017) On extremal index of max-stable stationary processes. Probab Math Stat 37(2):299–317

    MathSciNet  MATH  Google Scholar 

  • Dȩbicki K, Michna Z, Rolski T (2003) Simulation of the asymptotic constant in some fluid models. Stoch Models 19(3):407–423

    Article  MathSciNet  Google Scholar 

  • Dȩbicki K, Hashorva E, Ji L (2015) Gaussian risk models with financial constraints. Scand Actuar J 2015(6):469–481

    Article  MathSciNet  Google Scholar 

  • Dȩbicki K, Hashorva E, Ji L (2016) Parisian ruin over a finite-time horizon. Sci China Math 59(3):557–572

    Article  MathSciNet  Google Scholar 

  • Dȩbicki K, Engelke S, Hashorva E (2017a) Generalized Pickands constants and stationary max-stable processes. Extremes 20(3):493–517

    Article  MathSciNet  Google Scholar 

  • Dȩbicki K, Hashorva E, Liu P (2017b) Extremes of Gaussian random fields with regularly varying dependence structure. Extremes 20(2):333–392

    Article  MathSciNet  Google Scholar 

  • Dȩbicki K, Hashorva E, Liu P (2017c) Uniform tail approximation of homogenous functionals of Gaussian fields. Adv Appl Probab 49(4):1037–1066

  • Dieker AB, Yakir B (2014) On asymptotic constants in the theory of extremes for Gaussian processes. Bernoulli 20(3):1600–1619

    Article  MathSciNet  Google Scholar 

  • Dieker AB, Mikosch T (2015) Exact simulation of Brown-Resnick random fields at a finite number of locations. Extremes 18:301–314

    Article  MathSciNet  Google Scholar 

  • Geluk JL, de Haan L (1987) Regular variation, extensions and Tauberian theorems, vol. 40 of CWI Tract. Stichting Mathematisch Centrum. Centrum voor Wiskunde en Informatica, Amsterdam

    Google Scholar 

  • Gnedenko BV, Korolyuk VS (1950) Some remarks on the theory of domains of attraction of stable distributions. Dopovidi Akad Nauk Ukrain RSR 4:275–278

    MathSciNet  Google Scholar 

  • Harper AJ (2017) Pickands’ constant H α does not equal 1/Γ(1/α), for small α. Bernoulli 23(1):582–602

    Article  MathSciNet  Google Scholar 

  • Hashorva E (2018) Representations of max-stable processes via exponential tilting, Stoch Process Appl, in press. https://doi.org/10.1016/j.spa.2017.10.003

    Article  MathSciNet  Google Scholar 

  • Hashorva E, Hüsler J (2000) Extremes of Gaussian processes with maximal variance near the boundary points. Methodol Comput Appl Probab 2(3):255–269

    Article  MathSciNet  Google Scholar 

  • Hüsler J (1990) Extreme values and high boundary crossings of locally stationary Gaussian processes. Ann Probab 18(3):1141–1158

    Article  MathSciNet  Google Scholar 

  • Hüsler J (1995) A note on extreme values of locally stationary Gaussian processes. J Stat Planning Inference 45(1-2):203–213

    Article  MathSciNet  Google Scholar 

  • Hüsler J, Piterbarg VI (1999) Extremes of a certain class of Gaussian processes. Stoch Process Appl 83(2):257–271

    Article  MathSciNet  Google Scholar 

  • Hüsler J, Piterbarg VI (1999) Extremes of a certain class of Gaussian processes. Stoch Process Appl 83(2):257–271

    Article  MathSciNet  Google Scholar 

  • Hüsler J, Piterbarg VI (2017) On shape of high massive excursions of trajectories of Gaussian homogeneous fields. Extremes 20(3):691–711

    Article  MathSciNet  Google Scholar 

  • Michna Z (2017) Remarks on Pickands’ theorem. Probab Math Stat 37(2):373–393

    MathSciNet  MATH  Google Scholar 

  • Pickands III J (1969) Asymptotic properties of the maximum in a stationary Gaussian process. Trans Am Math Soc 145:75–86

    MathSciNet  MATH  Google Scholar 

  • Piterbarg VI (1972) On the paper by J. Pickands Upcrosssing probabilities for stationary Gaussian processes. Vestnik Moscow Univ Ser I Mat Mekh 27, 25-30. English Transl Moscow Univ Math Bull 27:25–30

    Google Scholar 

  • Piterbarg VI (1996) Asymptotic methods in the theory of Gaussian processes and fields, vol. 148 of Translations of Mathematical Monographs. American Mathematical Society, Providence

    Google Scholar 

  • Piterbarg VI (2004) Discrete and continuous time extremes of gaussian processes. Extremes 7(2):161–177

    Article  MathSciNet  Google Scholar 

  • Piterbarg VI (2015) Twenty lectures about Gaussian processes. Atlantic Financial Press, London

    MATH  Google Scholar 

  • Piterbarg VI (2016) High extrema of Gaussian chaos processes. Extremes 19 (2):253–272

    Article  MathSciNet  Google Scholar 

  • Shao Q (1996) Bounds and estimators of a basic constant in extreme value theory of Gaussian processes. Stat Sin 6:245–257

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Enkelejd Hashorva for his numerous remarks on all the steps of preparation of the manuscript and for ideas that led to the proof of Theorem 1.1. K.D. was partially supported by NCN Grant No 2015/17/B/ST1/01102 (2016-2019). X.P. thanks the Fundamental Research Funds for the Central Universities (ZYGX2015J102) and National Natural Science Foundation of China (71501025,11701070) for partial financial support. Financial support from the Swiss National Science Foundation Grant 200021-175752/1 is also kindly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofan Peng.

Appendix

Appendix

Let Ku be an index function of u, D be a compact set in \(\mathbb {R}^{n}\) and suppose without loss of generality that 0 ∈D. Further, let {ξu,k(t),t ∈D,kKu} be a family of centered Gaussian random fields with a.s. continuous sample paths and variance function \(\sigma ^{2}_{\xi _{u,k}}\). For t such that \(\sigma ^{2}_{\xi _{u,k}}(\textit {\textbf {t}})>0\) define the standardised process

$$\tilde \xi_{u,k}(\textit{\textbf{t}}):= \frac{\xi_{u,k}(\textit{\textbf{t}})}{\sigma_{\xi_{u,k}}(\textit{\textbf{t}})},\quad \textit{\textbf{t}}\in\textit{\textbf{D}}. $$
  • C0:   {gk(u),kKu} is a sequence of deterministic functions of u satisfying

    $$\begin{array}{@{}rcl@{}} \lim\limits_{u\to\infty}\inf\limits_{k\in K_u}g_{k}(u)=\infty. \end{array} $$
  • C1:   \(\sigma _{\xi _{u,k}}(\textbf {0})= 1\) for all large u and any kKu, and there exists some bounded continuous function h on D such that

    $$\begin{array}{@{}rcl@{}} \lim\limits_{u\to\infty}\sup\limits_{\textit{\textbf{t}}\in \textit{\textbf{D}},k\in K_u}|g_{k}^2(u)\left( 1- \mathbb{E}\{ \xi_{u,k}(\textit{\textbf{t}})\xi_{u,k}(\textbf{0})\} \right) - h(\textit{\textbf{t}})| = 0. \end{array} $$
  • C2:   There exists a centered Gaussian random field \(\zeta (\textit {\textbf {t}}),\textit {\textbf {t}}\in \mathbb {R}^{n}\) with a.s. continuous trajectories such that for any s,t ∈D

    $$\begin{array}{@{}rcl@{}} \lim\limits_{u\to\infty}\sup\limits_{k\in K_u}|g_{k}^2(u)\left( Var(\tilde\xi_{u,k}(\textit{\textbf{t}})-\tilde\xi_{u,k}(\textit{\textbf{s}}))\right) - 2Var(\zeta(\textit{\textbf{t}})-\zeta(\textit{\textbf{s}}))| = 0. \end{array} $$
  • C3:   There exist positive constants C,ν,u0 such that

    $$\begin{array}{@{}rcl@{}} \sup\limits_{k\in K_u} g_{k}^2(u)\mathbb{E}\{(\tilde\xi_{u,k}(\textit{\textbf{t}})-\tilde\xi_{u,k}(\textit{\textbf{s}}))^2\} \leq C ||\textit{\textbf{s}}-\textit{\textbf{t}}||^{\nu} \end{array} $$

    holds for all s,t ∈D,uu0, where \(||\textit {\textbf {t}} ||^{v}={\sum }_{i = 1}^{n}|t_{i}|^{v}\).

We present below an extension of Theorem 2.1 in Dȩbicki et al. (2017c). Recalling that μη(dt)/ηn denotes the counting measure on \(\eta \mathbb {Z}^n, \eta >0\) and μ0 is the Lebesgue measure on \(\mathbb {R}^{n}\).

Theorem 5.1

Leth,gk(u),ξu,k(t),t ∈D,kKuandζbe such thatC0-C3hold. Then, forη ≥ 0

$$ \lim\limits_{u\to\infty}\sup\limits_{k\in K_u} |\frac{\mathbb{P} \left\{ {\int}_{\textit{\textbf{D}}} {\mathbb{I}\left( \xi_{u,k}(\textit{\textbf{t}})>g_{k}(u)\right)} {\mu_{\eta}(\mathrm{d}\textit{\textbf{t}})} >x \right\} } {{\Psi}(g_{k}(u))} -\mathcal{B}^{h,\eta}_{\zeta}(\textit{\textbf{D}},x)| = 0 $$
(5.1)

holds at x = 0 and all x ∈ (0,μη(D)) continuity points of \(\mathcal {B}^{h,\eta }_{\zeta }(\textit {\textbf {D}},\cdot )\), where

$$\begin{array}{@{}rcl@{}} \mathcal{B}^{h,\eta}_{\zeta}(\textit{\textbf{D}},x)= {\int}_{\mathbb{R}} \left\{ {\int}_{\textit{\textbf{D}}} \mathbb{I}_0\left( \sqrt{2}\zeta(\textit{\textbf{t}})-h(\textit{\textbf{t}}) + z \right) {\mu_{\eta}(\mathrm{d}\textit{\textbf{t}})} > x\right\} e^{-z} \mathrm{d} z. \end{array} $$

Proof of Theorem

5.1 Before beginning the proof, for notational simplicity we denote by Ru,k and ρu,k the covariance and the correlation function of ξu,k. Further set

$$\chi_{u,k}(\textit{\textbf{t}}) := g_{k}(u)(\tilde\xi_{u,k}(\textit{\textbf{t}})-\rho_{u,k}(\textit{\textbf{t}},\textbf{0})\tilde\xi_{u,k}(\textbf{0})),\quad \textit{\textbf{t}}\in\textit{\textbf{D}} $$

and

$$f_{u,k}(\textit{\textbf{t}},z):=z R_{u,k}(\textit{\textbf{t}},\textbf{0})-{g_{k}^{2}}(u)\left( 1-R_{u,k}(\textit{\textbf{t}},\textbf{0}) \right) ,\ \textit{\textbf{t}}\in \textit{\textbf{D}}, z\in\mathbb{R}. $$

Conditioning on ξu,k(0) and using that ξu,k(0) and ξu,k(t) − Ru,k(t,0)ξu,k(0) are mutually independent for all large u, we obtain

$$\begin{array}{@{}rcl@{}} &&\mathbb{P} \left\{ {\int}_{\textit{\textbf{D}}} {\mathbb{I}\left( \xi_{u,k}(\textit{\textbf{t}})>g_{k}(u)\right)} {\mu_{\eta}(\mathrm{d}\textit{\textbf{t}})} >x \right\}\\ & = &\frac{e^{-g_{k}^2(u)/2}} { \sqrt{2\pi}g_{k}(u)} {\int}_{\mathbb{R}} \exp\left( -z-\frac{z^2}{2g_{k}^2(u)}\right)\\ && \times \mathbb{P} \left\{ {\int}_{\textit{\textbf{D}}} \left( g_{k}(u)(\xi_{u,k}(\textit{\textbf{t}})-g_{k}(u))\right) {\mu_{\eta}(\mathrm{d}\textit{\textbf{t}})} >x | \xi_{u,k}(\textbf{0})=g_{k}(u)+zg_{k}^{-1}(u) \right\} \mathrm{d} z\\ & = &\frac{e^{-g_{k}^2(u)/2}} { \sqrt{2\pi}g_{k}(u)} {\int}_{\mathbb{R}} \exp\left( -z - \frac{z^2}{2g_{k}^2(u)}\right) \mathbb{P} \left\{ {\int}_{\textit{\textbf{D}}} \left( {\sigma_{\xi_{u,k}}(\textit{\textbf{t}})}\chi_{u,k}(\textit{\textbf{t}}) + f_{u,k}(\textit{\textbf{t}},z)\right) {\mu_{\eta}(\mathrm{d}\textit{\textbf{t}})} \!>\!x \right\} \mathrm{d} z. \end{array} $$

Let

$$\begin{array}{@{}rcl@{}} \mathcal{I}_{u,k}(x,z):=\mathbb{P} \left\{ {\int}_{\textit{\textbf{D}}} \left( {\sigma_{\xi_{u,k}}(\textit{\textbf{t}})}\chi_{u,k}(\textit{\textbf{t}}) + f_{u,k}(\textit{\textbf{t}},z)\right) {\mu_{\eta}(\mathrm{d}\textit{\textbf{t}})} >x \right\} . \end{array} $$

Consequently, in order to show the claim it suffices to prove that

$$ \lim\limits_{u\to\infty}\sup\limits_{k\in K_u}|{\int}_{\mathbb{R}} \exp\left( -z-\frac{z^2}{2g_{k}^2(u)}\right) \mathcal{I}_{u,k}(x,z) \mathrm{d} z - \mathcal{B}^{h,\eta}_{\zeta}(\textit{\textbf{D}},x)| = 0 $$
(5.2)

at x = 0 and all x ∈ (0,μη(D)) continuity points of \(\mathcal {B}^{h,\eta }_{\zeta }(\textit {\textbf {D}},\cdot )\).

For any s,t ∈D,

$$ \sup\limits_{k\in K_u}\mathbb{E}\{\chi_{u,k}(\textit{\textbf{t}})-\chi_{u,k}(\textit{\textbf{s}})\}^2 = \sup\limits_{k\in K_u}{g_{k}^2(u)\left( \!\mathbb{E}\{(\tilde\xi_{u,k}(\textit{\textbf{t}}) - \tilde\xi_{u,k}(\textit{\textbf{s}}))^{2}\} - \left( \rho_{\xi_{u,k}}(\textit{\textbf{t}},\textbf{0}) - \rho_{\xi_{u,k}}(\textit{\textbf{s}},\textbf{0}) \right)^2 \right)}, $$
(5.3)

which together with C2-C3 yields

$$\begin{array}{@{}rcl@{}} &&\lefteqn{ \lim\limits_{u\to\infty}\sup\limits_{k\in K_u}|\text{Var}(\chi_{u,k}(\textit{\textbf{t}})-\chi_{u,k}(\textit{\textbf{s}})) - 2\text{Var}(\zeta(\textit{\textbf{t}})-\zeta(\textit{\textbf{s}}))||}\\ &\leq& \lim\limits_{u\to\infty}\sup\limits_{\textit{\textbf{t}}\in\textit{\textbf{D}},k\in K_u} 4g_{k}^2(u) |1- \rho_{\xi_{u,k}}(\textit{\textbf{t}},\textbf{0})|^2 = 0. \end{array} $$

Hence, the finite-dimensional distributions of χu,k converge to that of \(\sqrt {2}\zeta (\textit {\textbf {t}}),\textit {\textbf {t}}\in \textit {\textbf {D}}\) uniformly with respect to kKu. Let C(D) denote the Banach space of all continuous functions on D equipped with sup-norm. By Eq. 5.3 and C3, we know that

$$ \sup\limits_{k\in K_u}\mathbb{E}\{\chi_{u,k}(\textit{\textbf{t}})-\chi_{u,k}(\textit{\textbf{s}})\}^2 \leq C||\textit{\textbf{s}}-\textit{\textbf{t}}||^{\nu} $$
(5.4)

holds for large enough u and all s,t ∈D, thus the measures on C(D) induced by {χu,k(t),t ∈D,kKu} are uniformly tight for large u. Therefore, {χu,k(t),t ∈D} converge weakly to \(\{\sqrt {2}\zeta (\textit {\textbf {t}}),\textit {\textbf {t}}\in \textit {\textbf {D}}\}\) as u uniformly with respect to kKu.

Further, for large u

$$1-\mathbb{E}\{\xi_{u,k}(\textit{\textbf{t}})\xi_{u,k}(\textbf{0})\}= 1-\rho_{{\xi_{u,k}}}(\textit{\textbf{t}},\textbf{0})+\rho_{{\xi_{u,k}}}(\textit{\textbf{t}},\textbf{0})(1-{\sigma_{\xi_{u,k}}(\textit{\textbf{t}})}),$$

which together with C1-C2 implies

$$ \lim\limits_{u\to\infty}\sup\limits_{\textit{\textbf{t}}\in \textit{\textbf{D}},k\in K_u}|\sigma_{\xi_{u,k}}(\textit{\textbf{t}})-1|= 0. $$
(5.5)

By C0-C1, for each \(z\in \mathbb {R}\)

$$ \lim_{u \to \infty} \sup\limits_{k\in K_u, \textit{\textbf{t}}\in\textit{\textbf{D}}}|f_{u,k}(\textit{\textbf{t}},z)-z +h(\textit{\textbf{t}})| = 0. $$
(5.6)

Thus, for each \(z\in \mathbb {R}\), the probability measures on C(D) induced by \(\{{\sigma _{\xi _{u,k}}(\textit {\textbf {t}})}\chi _{u,k}(\textit {\textbf {t}}) + f_{u,k}(\textit {\textbf {t}},z),\textit {\textbf {t}}\in \textit {\textbf {D}}\}\) converge weakly, as u, to that induced by \(\{\sqrt {2}\zeta (\textit {\textbf {t}})-h(\textit {\textbf {t}}) + z,\textit {\textbf {t}}\in \textit {\textbf {D}}\}\) uniformly with respect to kKu. Therefore, for any \(\eta >0,z\in \mathbb {Z}\)

$$ \lim\limits_{u\to\infty}\sup\limits_{k\in K_u}|\mathcal{I}_{u,k}(x,z) - \mathcal{I}(x,z)| = 0 $$
(5.7)

holds at all x ∈ (0,μη(D)) continuity points (depending on z) of \(\mathcal {I}(\cdot ,z)\) defined by

$$\mathcal{I}(x,z) := \mathbb{P} \left\{ {\int}_{\textit{\textbf{D}}} \left( \sqrt{2}\zeta(\textit{\textbf{t}})-h(\textit{\textbf{t}}) + z\right) {\mu_{\eta}(\mathrm{d}\textit{\textbf{t}})} > x \right\} . $$

For η = 0, by Berman (1973)[Lemma 4.2] the set of discontinuity points under the uniform convergence on D of

$${\int}_{\textit{\textbf{D}}} \mathbb{I}_{0}(f(\textit{\textbf{t}})) \mathrm{d}\textit{\textbf{t}},\quad f\in C(\textit{\textbf{D}})$$

is of measure 0 under the probability measure induced by \(\{ {\sqrt {2}\zeta (\textit {\textbf {t}})-h(\textit {\textbf {t}})} + z,\textit {\textbf {t}}\in \textit {\textbf {D}}\}\). Consequently, by the continuous mapping theorem we also have Eq. 5.7 for η = 0.

Next, we borrow an argument from Berman (1992) [Theorem 1.3.1] to verify Eq. 5.2 for all positive continuity points of \(\mathcal {B}^{h,\eta }_{\zeta }(\textit {\textbf {D}},\cdot )\). Let x0 ∈ (0,μη(D)) satisfy

$$\lim\limits_{\varepsilon\to0}{\int}_{\mathbb{R}} \left( \mathcal{I}(x_{0}+\varepsilon,z) -\mathcal{I}(x_{0}-\varepsilon,z)\right)e^{-z} \mathrm{d} z = 0.$$

Since for large M and all x ≥ 0 by Borell-TIS inequality

$$ e^{-z}\mathcal{I}(x,z) \leq C_1 e^{-C_2z^2-C_3z},\quad z<-M, $$
(5.8)

it follows from the dominated convergence theorem that

$${\int}_{\mathbb{R}} \left( \mathcal{I}(x_{0}+,z) -\mathcal{I}(x_{0}-,z)\right) e^{-z} \mathrm{d} z = 0,$$

and thus by the monotonicity of \(\mathcal {I}(x,z)\) in x for each fixed z, x0 is a continuity point of \(\mathcal {I}(\cdot ,z)\) for almost all \(z\in \mathbb {R}\). Hence by Eq. 5.7 for almost all \(z\in \mathbb {R}\)

$$ \lim\limits_{u\to\infty}\sup\limits_{k\in K_u}| \mathcal{I}_{u,k}(x_0,z) - \mathcal{I}(x_0,z)| = 0. $$
(5.9)

Further, by Eqs. 5.5 and 5.6 and Borell-TIS inequality, for sufficiently large u and M

$$\begin{array}{@{}rcl@{}} \sup\limits_{k\in K_u}e^{-z}{\mathcal{I}_{u,k}(x,z)} &\leq& \sup_{k\in K_u}\mathbb{P} \left\{ \sup_{\textit{\textbf{t}}\in\textit{\textbf{D}}}\{{\sigma_{\xi_{u,k}}(\textit{\textbf{t}})}\chi_{u,k}(\textit{\textbf{t}}) + f_{u,k}(\textit{\textbf{t}},z)\}>0 \right\} e^{-z}\\ &\leq& \sup_{k\in K_u}\mathbb{P} \left\{ \sup_{\textit{\textbf{t}}\in\textit{\textbf{D}}} \chi_{u,k}(\textit{\textbf{t}})>C_4|z|-C_5 \right\} e^{-z}\\ &\leq& \sup_{k\in K_u} e^{-z} \exp\left( - \frac{\left( C_4|z|-C_5-\mathbb{E}\{\sup_{\textit{\textbf{t}}\in \textit{\textbf{D}}} \chi_{u,k}(\textit{\textbf{t}})\} \right)^2} {2\text{Var}_{\textit{\textbf{t}}\in\textit{\textbf{D}}} \chi_{u,k}(\textit{\textbf{t}})} \right)\\&\!\leq\!& e^{-z} \exp\left( - \frac{\left( C_4|z| - C_5 - \mathbb{E}\{\sup_{\textit{\textbf{t}}\in \textit{\textbf{D}}} {\sum}_{i = 1}^{n}\sqrt{C} B_{\nu}^{i}(t_i)\} \right)^2} {2\sup_{\textit{\textbf{t}}\in\textit{\textbf{D}}} C||\textit{\textbf{t}}||^{\nu}} \right) \end{array} $$
(5.10)
$$\begin{array}{@{}rcl@{}} &=& C_6 e^{-C_7z^2-C_8|z|},\quad z<-M, \end{array} $$
(5.11)

where Eq. 5.10 follows from Sudakov-Fernique inequality (see, e.g., Adler (1990)[Theorem 2.9]), with conditions required therein being ensured by Eq. 5.4 and \(B_{\nu }^{(i)}\)’s being independent fBm’s with Hurst index ν/2.

Consequently, by Eqs. 5.85.9 and 5.11, a direct application of the dominated convergence theorem yields that

$$\begin{array}{@{}rcl@{}} &&\lefteqn{\lim_{u\to\infty}\sup_{k\in K_u}|{\int}_{\mathbb{R}} \exp\left( -z-\frac{z^2}{2g_{k}^2(u)} \right) \mathcal{I}_{u,k}(x_0,z) \mathrm{d} z -\mathcal{B}^{h,\eta}_{\zeta}(\textit{\textbf{D}},x_0)|}\\ &\leq& \lim_{u\to\infty}{\int}_{\mathbb{R}} \sup_{k\in K_u} \left( e^{-z} \mathcal{I}_{u,k}(x_0,z)\right) |1- e^{-z^2/(2g_{k}^2(u))}|\mathrm{d} z\\ &&+ \lim_{u\to\infty} {\int}_{\mathbb{R}} \sup_{k\in K_u}|\mathcal{I}_{u,k}(x_0,z) - \mathcal{I}(x_0,z)| e^{-z} \mathrm{d} z\\ &=&0 \end{array} $$

verifying Eq. 5.1 for any x0 ∈ (0,μη(D)) a continuity point of \(\mathcal {B}^{h,\eta }_{\zeta }(\textit {\textbf {D}},\cdot )\).

The case x = 0,η = 0 is shown in Dȩbicki et al. (2017c). Since the case x = 0,η > 0 can be established by arguments similar to the presented above, we omit the details. This completes the proof. □

Let for any η ≥ 0,b > 0,S > 0, x ∈ [0,μη([−S,S]))

$$ \mathcal{P}_{\alpha}^{b,\eta}(S,x) := {\int}_{\mathbb{R}} \mathbb{P} \left\{ {\int}_{-S}^S \left( W_{\alpha}(s)-b|s|^{\alpha}+ z\right) \mu_{\eta}(\mathrm{d} s) >x \right\} e^{-z}\mathrm{d} z $$
(5.12)

and

$$ \mathcal{T}_{\beta}^{b,\eta}(S,x) := {\int}_{0}^{\infty} \left\{{\int}_{-S}^S \left( -b|s|^{\beta}+ z\right) \mu_{\eta}(\mathrm{d} s) >x\right\} e^{-z}\mathrm{d} z. $$
(5.13)

Lemma 5.1

  1. i)

    Let X be as in Theorem 2.1 andv(u) be as in Eq. ??. For anyη ≥ 0, S > ηandtusuch that\(\lim _{u \to \infty } t_{u}=t_{0}\in [0,T]\),we have

    $$\begin{array}{@{}rcl@{}} \lim_{u\to\infty} {\Psi}^{-1}(u) \mathbb{P} \left\{ v(u){\int}_0^{S/v(u)} \left( X(t_u+s)\right) \mu_{\eta_u}(\mathrm{d} s)>x \right\} = \mathcal{B}_{\alpha,H(t_0)}^{\eta} (S,x) \end{array} $$

    atx = 0 and anyx ∈ (0,μη([0,S])) a continuitypoint of\(\mathcal {B}_{\alpha ,H(t_{0})}^{\eta } (S,\cdot )\).

  2. ii)

    Let X be as in Theorem 3.1,v(u),\(\mathcal {P}_{\alpha }^{b,\eta }(\cdot ,\cdot )\)and\(\mathcal {T}_{\beta }^{b,\eta }(\cdot ,\cdot )\)bedefined in Eqs. ??, 5.12and 5.13, respectively. Then for anyη ≥ 0 andS > 0,asu

    $$\begin{array}{@{}rcl@{}} \mathbb{P} \left\{ L^{\ast}_{\eta,u}[-S/v(u),S/v(u)] >x \right\} \sim {\Psi}(u)\times \left\{ \begin{array}{ll} \mathcal{P}_{\alpha}^{b,\eta}(S,x) & \text{if}\ \alpha=\beta\\ \mathcal{T}_{\beta}^{b,\eta}(S,x) & \text{if}\ \alpha>\beta \end{array} \right. \end{array} $$

    holds forx = 0 and anyx ∈ (0,μη([−S,S])) a continuity pointof\(\mathcal {P}_{\alpha }^{b,\eta }(S,\cdot )\)or\(\mathcal {T}_{\beta }^{b,\eta }(S,\cdot )\)respectively.

Proof of Lemma

5.1 i) For any x ≥ 0

$$\begin{array}{@{}rcl@{}} \mathbb{P} \left\{ v(u){\int}_{0}^{S/v(u)} \left( X(t_{u} + s)\right) \mu_{\eta_{u}}(\mathrm{d} s)>x \right\} = \mathbb{P} \left\{ {{\int}_{0}^{S}} {\mathbb{I}\left( X(t_{u}+t/v(u))>u\right)} \mu_{\eta}(\mathrm{d} t)>x \right\} . \end{array} $$

Set D = [0,S],gk(u) = u,Ku = 1 and ξu,k(t) = X(tu + t/v(u)). We now check that C1-C3 are fulfilled with h(t) = H(t0)tα,t ∈ [0,S] and \( \zeta (t)=\sqrt {H(t_{0})}B_{\alpha }(t)\). First note that Eq. ?? implies

$$\begin{array}{@{}rcl@{}} &&\lefteqn{\limsup_{u\to\infty}\sup_{t\in[0,S]}|\frac{1-\rho(t_{u},t_{u}+t/v(u))}{K(t/v(u))}-H(t_{0})}|\\ &\leq& \limsup_{u\to\infty}\sup_{t\in[0,S]}|\frac{1-\rho(t_{u},t_{u}+t/v(u))}{K(t/v(u))}-H(t_{u})|+\lim_{u\to\infty}|H(t_{u})-H(t_{0})|\\ &=&0. \end{array} $$

Further, by Eq. 2.2 and the Uniform Convergence Theorem (see, e.g., Bingham et al. (1989)[Theorem 1.5.2])

$$\begin{array}{@{}rcl@{}} &&\lefteqn{ \limsup_{u\to\infty}\sup_{t\in[0,S]}|u^{2}K(t/v(u))-t^{\alpha}|}\\ &\leq& \limsup_{u\to\infty}\sup_{t\in[0,S]}|\frac{K(t/v(u))}{K(1/v(u))}-t^{\alpha}| + \limsup_{u\to\infty}\sup_{t\in[0,S]}\frac{K(t/v(u))}{K(1/v(u))}|u^{2}K(1/v(u))-1|\\ & =&0, \end{array} $$
(5.14)

and thus

$$\begin{array}{@{}rcl@{}} &&\lefteqn{ \limsup_{u\to\infty}\sup_{t\in[0,S]}|u^{2}(1-\mathbb{E}\{X(t_{u}+t/v(u))X(t_{u})\})-H(t_{0})t^{\alpha}|}\\ &=&\limsup_{u\to\infty}\sup_{t\in[0,S]}|u^{2}(1-\rho(t_{u},t_{u}+t/v(u)))-H(t_{0})t^{\alpha}|\\ &\leq& \limsup_{u\to\infty} \sup_{t\in[0,S]} |\frac{1-\rho(t_{u},t_{u}+t/v(u))}{K(t/v(u))}-H(t_{0})||t|^{\alpha}\\ &&+\ \limsup_{u\to\infty} \sup_{t\in[0,S]} |\frac{1-\rho(t_{u},t_{u}+t/v(u))}{K(t/v(u))}||u^{2}K(t/v(u))-t^{\alpha}|\\ &=&0. \end{array} $$

Similarly, for any s,t ∈ [0,S],

$$\begin{array}{@{}rcl@{}} &&\lefteqn{\limsup_{u\to\infty}2^{-1}|u^{2}\text{Var}\left( X(t_{u}+t/v(u))-X(t_{u}+s/v(u))\right)-2H(t_{0})|t-s|^{\alpha}|}\\ &=&\limsup_{u\to\infty}|u^{2}(1-\rho(t_{u}+s/v(u),t_{u}+t/v(u)))-H(t_{0})|t-s|^{\alpha}|\\ &\leq& \limsup_{u\to\infty} |\frac{1-\rho(t_{u}+s/v(u),t_{u}+t/v(u))}{K((t-s)/v(u))}-H(t_{u}+s/v(u))||t-s|^{\alpha}\\ &&+\ \limsup_{u\to\infty} |H(t_{u}+s/v(u))-H(t_{0})||t-s|^{\alpha}\\ &&+\ \limsup_{u\to\infty} |\frac{1-\rho(t_{u}+s/v(u),t_{u}+t/v(u))}{K((t-s)/v(u))}||u^{2}K((t-s)/v(u))-|t-s|^{\alpha}|\\ &=&0. \end{array} $$

Next, according to Eq. 2.2 and Potter’s Theorem (see, e.g., Bingham et al. (1989)[Theorem 1.5.6]), for large enough u there exists some constant C > 1 such that

$$ u^{2}K(|s-t|/v(u))=u^{2} K(1/v(u))\frac{K(|s-t|/v(u))}{K(1/v(u))}\leq C|| s-t ||^{\alpha/2} $$
(5.15)

holds for all s,t ∈ [0,S]. Hence

$$\begin{array}{@{}rcl@{}} &&\lefteqn{u^{2}\mathbb{E}\{\left( X(t_{u}+t/v(u))-X(t_{u}+s/v(u))\right)^{2}\}}\\ &=&2u^{2}(1-\rho(t_{u}+s/v(u),t_{u}+t/v(u)))\\ &=& 2u^{2}K(|| s-t ||/v(u))\frac{1-\rho(t_{u}+s/v(u),t_{u}+t/v(u))}{K(|| s-t ||/v(u))}\\ &\leq& 4C\overline{h}|| s-t ||^{\alpha/2}, \end{array} $$

where in the last inequality we have used Eq. 2.1 with \(\overline {h}=\max _{t\in [0,T]}H(t)\). Therefore, C0-C3 hold and thus our claim i) follows by Theorem 5.1 with \( \mathcal {B}^{h,\eta }_{\zeta }(\textit {\textbf {D}},x)=\mathcal {B}_{\alpha ,H(t_{0})}^{\eta } (S,x)\). The claim in ii) follows with similar arguments. □

Lemma 5.2

If\(\zeta (\textit {\textbf {t}})={\sum }_{i = 1}^{n} \sqrt {\lambda _{i}}B_{\alpha }^{(i)}(t_{i})\)for somepositive constantsλ1λn,where\(B_{\alpha }^{(i)}\)’s are independentfBm’s with Hurst indexα/2,then for anyx,η ≥ 0,h(t) = Varζ(t) and\(\textit {\textbf {D}}={\prod }_{i = 1}^{n}[0,T_{i}]\)wehave

$$\mathcal{B}_{\zeta}^{h,\eta} (\textit{\textbf{D}},x)\leq {\prod}_{i = 1}^{n}\lceil\lambda_{i}^{1/\alpha}\rceil\lceil T_{i}\rceil H_{\alpha}^{n}([0,1]).$$

Proof of Lemma

5.2 For any x,η ≥ 0 and \(\textit {\textbf {D}}={\prod }_{i = 1}^{n}[0,T_{i}]\),

$$\begin{array}{@{}rcl@{}} \mathcal{B}_{\zeta}^{h,\eta} (\textit{\textbf{D}},x) &\leq& \mathbb{E}\{\exp\left( \sup_{\textit{\textbf{t}}\in{\prod}_{i = 1}^n[0,T_i]} {\sum}_{i = 1}^n \sqrt{2\lambda_i}B_{\alpha}^{(i)}(t_i) - {\sum}_{i = 1}^n \lambda_i t_i^{\alpha} \right)\} \\ &=& {\prod}_{i = 1}^n \mathbb{E}\{\sup_{t_i\in[0,\lambda_i^{1/\alpha}T_i]} e^{\sqrt{2}B_{\alpha}^{(i)}(t_i)-|| t_i ||^{\alpha}} \}\\ &\leq& {\prod}_{i = 1}^n\lceil\lambda_i^{1/\alpha}\rceil\lceil T_i\rceil H_{\alpha}^n([0,1]), \end{array} $$

where in the last inequality we have used Hα([0,T]) ≤⌈THα([0, 1]). □

Lemma 5.3

If X is a centered Gaussian process with unit variance fulfilling (??),v(u) is defined in Eq. ?? andKuis an index function of u, then for a sequence ofnumbers\(\{0<{S_{1}^{k}}<{S_{2}^{k}}<{T_{1}^{k}}<{T_{2}^{k}}<\infty , k\in K_{u}\}\)suchthat for someu0 > 0

$$ \inf_{u>u_0}\inf_{k\in K_u}(T_1^k-S_2^k)\geq1, $$
(5.16)
$$ \limsup_{u\to\infty}\frac{\sup_{k\in K_u}(T_2^k-S_1^k)}{v(u)}= 0, $$
(5.17)
$$ \overline{T}:=\sup_{u>u_0}\sup_{k\in K_u}(T_2^k-T_1^k)<\infty \quad \textmd{and}\quad \overline{S}:=\sup_{u>u_0}\sup_{k\in K_u}(S_2^k-S_1^k)<\infty, $$
(5.18)

we have

$$\begin{array}{@{}rcl@{}} \sup_{k\in K_u}\frac{\mathbb{P} \left\{ \sup_{t\in[S_1^k,S_2^k]/v(u)}X(t)>u,\sup_{t\in[T_1^k,T_2^k]/v(u)}X(t)>u \right\}} {\exp(-\frac{1}{16}\underline{h}|T_1^k-S_2^k|^{\alpha/2}){\Psi}(u)} \leq C(\alpha,\overline{S},\overline{T}) \end{array} $$

holds for sufficiently large u, where \(\underline {h}=\inf _{t\in [0,T]}H(t)>0\), \(\overline {h}=\sup _{t\in [0,T]}H(t)<\infty \) and

\(C(\alpha ,\overline {S},\overline {T})= 2\lceil (16\overline {h})^{1/\alpha }\rceil ^{2} \lceil \overline {S}\rceil \lceil \overline {T}\rceil H_{\alpha }^{2}([0,1])\).

Proof of Lemma

5.3 We borrow some arguments from the proof of Michna (2017)[Lemma 5]. Define

$$\begin{array}{@{}rcl@{}} {A_{u}^{k}}&=&[{S_{1}^{k}},{S_{2}^{k}}]/v(u),\qquad\qquad\quad {B_{u}^{k}}=[{T_{1}^{k}},{T_{2}^{k}}]/v(u),\quad k\in K_{u},\\ Y(s,t)&=&X(s)+X(t),\qquad\qquad\sigma^{2}(s,t)=\text{Var} (Y(s,t)). \end{array} $$

In view of Eq. 2.1, for sufficiently small ε we have

$$\frac{1}{2}\underline{h}K(|| s-t ||)\leq 1-\rho(s,t)\leq2\overline{h}K(|| s-t ||)\leq1,\quad \forall s,t\in[0,T],|| s-t ||<\varepsilon,$$

where the last inequality follows from the regularity of K. Therefore, by Eq. 5.17 for large enough u and then each kKu

$$\inf_{(s,t)\in {A_{u}^{k}}\times {B_{u}^{k}}}\sigma^{2}(s,t)\geq 4-4\overline{h}\sup_{(s,t)\in {A_{u}^{k}}\times {B_{u}^{k}}}K(|| s-t ||)\geq2$$

and

$$\sup_{(s,t)\in {A_{u}^{k}}\times {B_{u}^{k}}}\sigma^{2}(s,t)\leq 4-\underline{h}\inf_{(s,t)\in {A_{u}^{k}}\times {B_{u}^{k}}}K(|| s-t ||).$$

Then for every kKu we have

$$\begin{array}{@{}rcl@{}} \mathbb{P} \left\{ \sup_{t\in A_u^k}X(t)>u,\ \sup_{t\in B_u^k}X(t)>u \right\}&\leq& \mathbb{P} \left\{ \sup_{(s,t)\in A_u^k\times B_u^k} Y(s,t)>2u \right\} \end{array} $$
$$\begin{array}{@{}rcl@{}} &\leq& \mathbb{P} \left\{ \sup_{(s,t)\in A_u^k\times B_u^k} \tilde{Y}(s,t)>u^{*}_k \right\}, \end{array} $$
(5.19)

where \(\tilde {Y}(s,t)=Y(s,t)/\sigma (s,t)\) and

$$\begin{array}{@{}rcl@{}} u_k^{*}=\frac{2u}{\sqrt{4-\underline{h}\inf_{(s,t)\in A_u^k \times B_u^k}K(|| s-t ||)}}. \end{array} $$

Moreover, as in (Michna 2017), for any \((s_{i},t_{i})\in {A_{u}^{k}}\times {B_{u}^{k}}, i = 1,2, k\in K_{u}\) we get

$$\begin{array}{@{}rcl@{}} \text{Cov}(\tilde{Y}(s_1,t_1),\tilde{Y}(s_2,t_2))&\geq& 1-8\overline{h}K(|| s_2-s_1 ||)-8\overline{h}K(|| t_2-t_1 ||). \end{array} $$

Let \(Z(s,t):=\frac {1}{\sqrt {2}}(\vartheta _{1}(s)+\vartheta _{2}(t)), \)where 𝜗i,i = 1, 2 are mutually independent copies of a mean zero stationary Gaussian process 𝜗 with unit variance and covariance function satisfying

$$ 1-\text{Cov}(\vartheta(s),\vartheta(t))\sim 32\overline h K(|| s-t ||),\quad || t-s ||\to0. $$
(5.20)

As mentioned in the proof of Theorem 2.1, the existence of such a Gaussian process is guaranteed by the Assertion in (Hüsler and Piterbarg 1999b)[p.265]. Hence by Slepian inequality and Eq. 5.17, for sufficiently large u(> u0) and then each kKu we have

$$\begin{array}{@{}rcl@{}} \mathbb{P} \left\{ \sup_{(s,t)\in A_u^k\times B_u^k}\tilde{Y}(s,t)>u^{*}_k \right\} &\leq& \mathbb{P} \left\{ \sup_{(s,t)\in A_u^k\times B_u^k} Z(s,t)>u^{*}_k \right\}\\ &\leq& \mathbb{P} \left\{ \sup_{(s,t)\in[0,\overline{S}/v(u)]\times [0,\overline{T}/v(u)]} Z(s,t)>u^{*}_k \right\}, \end{array} $$
(5.21)

where the last inequality follows from stationarity of Z with \(\overline {S}\) and \(\overline {T}\) defined in Eq. 5.18.

Next, we apply Theorem 5.1 to give an uniform upper bound for the right hand side of Eq. 5.21. Setting \(\textit {\textbf {D}}=[0,\overline {S}]\times [0,\overline {T}], g_{k}(u)=u_{k}^{*}, k\in K_{u}\) and ξu,k(s,t) = Z(s/v(u),t/v(u)), we need to check that C0-C3 are fulfilled. First note \(\inf _{k\in K_{u}}u^{\ast }_{k}\geq u\) then C0 is naturally satisfied. Moreover, due to Eq. 5.17 and the regularity of K at 0

$$\begin{array}{@{}rcl@{}} \lim_{u\to\infty}\sup_{k\in K_u} || \frac{(u^{\ast}_k)^2}{u^2}-1 || &=& \lim_{u\to\infty}\sup_{k\in K_u} \frac{\underline{h}\inf_{(s,t)\in A_u^k \times B_u^k}K(|| s-t ||)}{4-\underline{h}\inf_{(s,t)\in A_u^k \times B_u^k}K(|s-t|)}\\ &\leq& \lim_{u\to\infty}\sup_{k\in K_u} \frac{\underline{h}K\left( (T_2^k-S_1^k)/v(u)\right)}{4-\underline{h}K\left( (T_2^k-S_1^k)/v(u)\right)}= 0, \end{array} $$
(5.22)

and thus

$$\begin{array}{@{}rcl@{}} &&{} (32\overline{h})^{-1}\limsup\limits_{u\to\infty}\sup\limits_{k\in K_u,{(s,t)\in[0,\overline{S}]\times[0,\overline{T}]}}|(u_k^{\ast})^2(1 - \mathbb{E}\{Z(s/v(u),t/v(u))Z(0,0)\}) - 16\overline{h}(s^{\alpha} + t^{\alpha})|\\ &\leq& \limsup\limits_{u\to\infty}\sup\limits_{k\in K_u,t\in[0,{\overline{S}\vee\overline{T}}]}|\frac{(u^{\ast}_k)^2}{u^2}\frac{1-\text{Cov}(\vartheta(t/v(u)), \vartheta(0))}{32\overline{h}K(t/v(u))}u^2K(t/v(u)) - t^{\alpha}|\\ &\leq& \limsup\limits_{u\to\infty}\sup\limits_{t\in[0,{\overline{S}\vee\overline{T}}]}\frac{1-\text{Cov}(\vartheta(t/v(u)),\vartheta(0))}{32\overline{h}K(t/v(u))}u^2K(t/v(u)) \sup\limits_{k\in K_u}|\frac{(u^{\ast}_k)^2}{u^2}-1|\\ &&{}+ \limsup\limits_{u\to\infty}\sup\limits_{t\in[0,{\overline{S}\vee\overline{T}}]}|1-\frac{1-\text{Cov}(\vartheta(t/v(u)),\vartheta(0))}{32\overline{h}K(t/v(u))}|\sup\limits_{t\in{\overline{S} \vee\overline{T}}}u^2K(t/v(u))\\ &&{}+ \limsup\limits_{u\to\infty}\sup\limits_{t\in[0,{\overline{S}\vee\overline{T}}]}|| u^2K(t/v(u))-t^{\alpha} ||\\ & =&0, \end{array} $$

where in the last equality we have used Eqs. 5.14 and 5.20. Therefore, C1 holds with \(h(s,t)= 16\overline {h}(s^{\alpha }+t^{\alpha }), {(s,t)\in [0,\overline {S}]\times [0,\overline {T}]}\). Similarly, for any \((s_{i},t_{i})\in [0,\overline {S}]\times [0,\overline {T}],i = 1,2\)

$$\begin{array}{@{}rcl@{}} &&{} (32\overline{h})^{-1}\!\limsup\limits_{u\to\infty}|| (u_k^{\ast})^2\text{Var}\left( Z(s_1\!/v(u),\!t_1/v(u)) - Z(s_2/v(u),t_2/v(u))\right) - 32\overline{h} (|s_2 - s_1|^{\alpha} + |t_2 - t_1|^{\alpha})||\\ &\leq& \limsup\limits_{u\to\infty}|| (u^{\ast}_k)^2\frac{1-\text{Cov}(\vartheta(s_1/v(u)),\vartheta(s_2/v(u)))}{32\overline{h}} -|s_2-s_1|^{\alpha} ||\\ && + \limsup\limits_{u\to\infty}|| (u^{\ast}_k)^2\frac{1-\text{Cov}(\vartheta(t_1/v(u)),\vartheta(st_2/v(u)))}{32\overline{h}} -|t_2-t_1|^{\alpha} ||\\ & =&0 \end{array} $$

verifying C2 with \(\zeta (s,t)=\sqrt {16\overline {h}}(B_{\alpha }^{(1)}(s)+B_{\alpha }^{(2)}(t))\), where \(B_{\alpha }^{(i)},i = 1,2\) are independent fBm’s with Hurst index α/2. Next, in view of Eqs. 5.15 and 5.22, for large enough u there exists some constant C > 1 such that

$$\sup\limits_{k\in K_{u}}(u_{k}^{\ast})^{2}K(|| s-t ||/v(u))=\sup_{k\in K_{u}}\frac{(u_{k}^{\ast})^{2}}{u^{2}}u^{2} K(|| s-t ||/v(u))\leq C|s-t|^{\alpha/2}$$

holds for all \(s,t\in [0,{\overline {S}\vee \overline {T}}]\). This together with Eq. 5.20 implies that for any two points \((s_{i},t_{i})\in [0,\overline {S}]\times [0,\overline {T}],i = 1,2\) and sufficiently large u

$$\begin{array}{@{}rcl@{}} &&\lefteqn{\sup\limits_{k\in K_u}(u_k^{\ast})^2\mathbb{E}\{\left( Z(s_1/v(u),t_1/v(u))-Z(s_2/v(u),t_2/v(u))\right)^2\}}\\ &=&\sup\limits_{k\in K_u}(u_k^{\ast})^2 || 2-\text{Cov}(\vartheta(s_1/v(u)),\vartheta(s_2/v(u)))-\text{Cov}(\vartheta(t_1/v(u)),\vartheta(t_2/v(u))) ||\\ &\leq& 32\overline{h}\sup_{k\in K_u}(u_k^{\ast})^2K(|s_2-s_1|/v(u))\frac{1-\text{Cov}(\vartheta(s_1/v(u)),\vartheta(s_2/v(u)))}{32\overline{h}K(|s_2-s_1|//v(u))}\\ &&+ 32\overline{h}\sup\limits_{k\in K_u}(u_k^{\ast})^2K(|t_2-t_1|/v(u))\frac{1-\text{Cov}(\vartheta(t_1/v(u)),\vartheta(t_2/v(u)))}{32\overline{h}K(|t_2-t_1|//v(u))}\\ &\leq& C_1(|| s_2-s_1 ||^{\alpha/2}+|| t_2-t_1 ||^{\alpha/2}), \end{array} $$

i.e., C3 is fulfilled with ν = α/2. Therefore, by Theorem 5.1 and Lemma 4.2,

$$ \sup_{k\in K_u} \frac{\mathbb{P} \left\{ \sup_{(s,t)\in[0,\overline{S}/v(u)]\times [0,\overline{T}/v(u)]} Z(s,t)>u^{*}_k \right\} } {{\Psi}(u_k^{\ast})} \leq \frac{3}{2}\lceil (16\overline{h})^{1/\alpha}\rceil^2 \lceil \overline{S}\rceil\lceil \overline{T}\rceil H_{\alpha}^2([0,1]) $$
(5.23)

holds for sufficiently large u. Further, by Potter’s theorem, there exists a small enough ε such that

$$\frac{K(\lambda x)}{\lambda^{\alpha/2} K(x)}\geq\frac{4}{5},\quad\forall 0<x<\lambda x<\varepsilon,$$

which together with Eqs. 5.16 and 5.17 yields for sufficiently large u(> u0)

$$\inf_{k\in K_{u}}\frac{\inf_{(s,t)\in {A_{u}^{k}}\times {B_{u}^{k}}}K(|| s-t ||)}{K(1/v(u))|| {T_{1}^{k}}-{S_{2}^{k}} ||^{\alpha/2}}\geq \frac{4}{5}.$$

Hence

$$\begin{array}{@{}rcl@{}} \inf_{k\in K_u} \frac{(u^{\ast}_k)^2-u^2}{\underline{h}(T_1^k-S_2^k)^{\alpha/2}} &\geq& \inf_{k\in K_u} \frac{u^2 \inf_{(s,t)\in A_u^k\times B_u^k}K(|| s-t ||)}{4(T_1^k-S_2^k)^{\alpha/2}}\\ &=& \frac{1}{4} u^2K(1/v(u)) \inf_{k\in K_u}\frac{\inf_{(s,t)\in A_u^k\times B_u^k}K(|| s-t ||)}{K(1/v(u))|| T_1^k-S_2^k ||^{\alpha/2}}\\ &\geq&\frac{1}{5} u^2K(1/v(u)) \geq \frac{1}{8}, \end{array} $$

where the last inequality follows from Eq. 2.2. Therefore for large enough u and each kKu

$$\begin{array}{@{}rcl@{}} {\Psi}(u^{\ast}_k)\leq \frac{1}{\sqrt{2\pi}u^{\ast}_k}e^{-\frac{(u^{\ast}_k)^2}{2}}\leq \frac{4}{3}{\Psi}(u)\exp\left( -\frac{1}{16}\underline{h}|| T_1^k-S_2^k ||^{\alpha/2}\right), \end{array} $$

which combined with Eq. 5.23 yileds

$$ \sup_{k\in K_u} \frac{\mathbb{P} \left\{ \sup_{(s,t)\in[0,\overline{S}/v(u)]\times [0,\overline{T}/v(u)]} Z(s,t)>u^{*}_k \right\} } {\exp(-\frac{1}{16}\underline{h}|| T_1^k-S_2^k ||^{\alpha/2}){\Psi}(u)} \leq 2\lceil (16\overline{h})^{1/\alpha}\rceil^2 \lceil \overline{S}\rceil\lceil \overline{T}\rceil H_{\alpha}^2([0,1]). $$
(5.24)

Consequently, substitution of Eqs. 5.21 and 5.24 to Eq. 5.19 completes the proof. □

Lemma 5.4

Let W be anN(0, 1) random variable independent of\(\mathcal {Z}\)whichis exponentially distributed with parameter 1. For anyc > 0 we have

$$\begin{array}{@{}rcl@{}} \left\{ cW- c^2/2 + Z> 0\right\}= 2 \mathbb{P} \left\{ W > c/2 \right\}. \end{array} $$

Proof of Lemma

5.4 Since Z > 0 almost surely, then

$$\mathbb{P} \left\{ cW- c^{2}/2 + Z> 0, cW- c^{2}/2 \ge 0 \right\} = \mathbb{P} \left\{ W> c/2 \right\}.$$

Let the random variable V be such that

$$\mathbb{P} \left\{ V \le x \right\}= \mathbb{E}\{ e^{c W- c^{2}/2} \mathbb{I}(cW- c^{2}/2 \le x)\}, \quad x\in \mathbb{R}.$$

It is well-known, see e.g., Hashorva (2018)[Lemma 7.1] that V has an N(c2/2,c2) distribution. Hence by the independence of Z and W

$$\begin{array}{@{}rcl@{}} \mathbb{P} \left\{ cW- c^2/2 + Z> 0, cW- c^2/2 \le 0 \right\} &=&\mathbb{E}\{ e^{cW- c^2/2} \mathbb{I}(cW- c^2/2\le 0)\}\\ &=& \mathbb{P} \left\{ V \le 0 \right\}= \mathbb{P} \left\{ W \le - c/2 \right\} \end{array} $$

establishing the proof. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dȩbicki, K., Michna, Z. & Peng, X. Approximation of Sojourn Times of Gaussian Processes. Methodol Comput Appl Probab 21, 1183–1213 (2019). https://doi.org/10.1007/s11009-018-9667-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11009-018-9667-7

Keywords

Mathematics Subject Classification (2010)

Navigation