Skip to main content

Advertisement

Log in

Twisting the Alive Particle Filter

  • Published:
Methodology and Computing in Applied Probability Aims and scope Submit manuscript

Abstract

This work focuses on sampling from hidden Markov models (Cappe et al. 2005) whose observations have intractable density functions. We develop a new sequential Monte Carlo (e.g. Doucet, 2011) algorithm and a new particle marginal Metropolis-Hastings (Andrieu et al J R Statist Soc Ser B 72:269-342, 2010) algorithm for these purposes. We build from Jasra et al (2013) and Whiteley and Lee (Ann Statist 42:115-141, 2014) to construct the sequential Monte Carlo (SMC) algorithm, which we call the alive twisted particle filter. Like the alive particle filter (Amrein and Künsch, 2011, Jasra et al, 2013), our new SMC algorithm adopts an approximate Bayesian computation (Tavare et al. Genetics 145:505-518, 1997) estimate of the HMM. Our alive twisted particle filter also uses a twisted proposal as in Whiteley and Lee (Ann Statist 42:115-141, 2014) to obtain a low-variance estimate of the HMM normalising constant. We demonstrate via numerical examples that, in some scenarios, this estimate has a much lower variance than that of the estimate obtained via the alive particle filter. The low variance of this normalising constant estimate encourages the implementation of our SMC algorithm within a particle marginal Metropolis-Hastings (PMMH) scheme, and we call the resulting methodology “alive twisted PMMH”. We numerically demonstrate, on a stochastic volatility model, how our alive twisted PMMH can converge faster than the standard alive PMMH of Jasra et al (2013).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amrein M, Künsch H (2011) A variant of importance splitting for rare event estimation: Fixed number of successes. TOMACS 21: article 13

  • Anderson BDO, Moore JB (1979) Optimal filtering. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Andrieu C, Vihola M (2014) Establishing some order amongst exact approximation of MCMCs. arXiv:1404.6909[stat.CO]

  • Andrieu C, Doucet A, Holenstein R (2010) Particle Markov chain Monte Carlo methods (with discussion). J R Statist Soc Ser B 72:269–342

    Article  MathSciNet  Google Scholar 

  • Cappé O, Ryden T, Moulines É (2005) Inference in hidden markov models. Springer, New York

    MATH  Google Scholar 

  • Cérou F, Moral Del P, Furon T, Guyader A (2012) Sequential Monte Carlo for rare event estimation. Statist Comp 22:795–808

    Article  MathSciNet  MATH  Google Scholar 

  • Dean T, Singh SS, Jasra A, Peters G (2014) Parameter inference for hidden Markov models with intractable likelihoods. to appear

  • Del Moral P (2004) Feynman-Kac formulae: genealogical and interacting particle systems with applications. Springer, New York

    Book  MATH  Google Scholar 

  • Del Moral P, Doucet A, Jasra A (2012) An adaptive sequential Monte Carlo method for approximate Bayesian computation. Statist Comp 22:1009–1020

    Article  MathSciNet  MATH  Google Scholar 

  • Doucet A, Johansen AM (2011) Particle filtering and smoothing: Fifteen years later. In: Crisanm D, Rozovsky B (eds) Oxford handbook of nonlinear filtering. OUP: Oxford

  • Jasra A, Lee A, Yau C, Zhang X (2013) The alive particle filter. arXiv preprint

  • Jasra A, Singh SS, Martin JS, McCoy E (2012) Filtering via approximate Bayesian computation. Statist Comp 22:1223–1237

    Article  MathSciNet  MATH  Google Scholar 

  • Julier SJ, Uhlmann JK (2004) Unscented filtering and nonlinear estimation. Proc IEEE 92:401–422

    Article  Google Scholar 

  • Kingman JFC (1976) Subadditive ergodic theory. Ann Probab 1:883–909

    Article  MathSciNet  MATH  Google Scholar 

  • Le Gland F, Oudjane N (2006) A sequential particle algorithm that keeps the particle system alive. In: Blom H, Lygeros J (eds) Stochastic hybrid systems : theory and safety critical applications, vol 337. Springer, Berlin, pp 351–389. Lecture Notes in Control and Information Sciences

    Chapter  Google Scholar 

  • Martin JS, Jasra A, Singh SS, Whiteley N, Del Moral P, McCoy E (2014) Approximate Bayesian computation for smoothing. Stoch Anal Appl 32:397–422

    Article  MathSciNet  MATH  Google Scholar 

  • Shephard N, Pitt MK (1997) Likelihood analysis of non-Gaussian measurement time series. Biometrika 84:653–667

    Article  MathSciNet  MATH  Google Scholar 

  • Tavare S, Balding DJ, Griffiths RC, Donnelly P (1997) Inferring coalescence times from DNA sequence data. Genetics 145:505–518

    Google Scholar 

  • Whiteley NP, Lee A (2014) Twisted particle filters. Ann Statist 42:115–141

    Article  MathSciNet  MATH  Google Scholar 

  • Yau C, Papaspiliopoulos O, Roberts GO, Holmes CC (2011) Bayesian non-parametric hidden Markov models with applications in genomics. J R Statist Soc Ser B 73:33–57

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Jasr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Persin, A., Jasr, A. Twisting the Alive Particle Filter. Methodol Comput Appl Probab 18, 335–358 (2016). https://doi.org/10.1007/s11009-014-9422-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11009-014-9422-7

Keywords

Mathematics Subject Classification (2010)

Navigation