Skip to main content
Log in

The First Passage Time Problem for Gauss-Diffusion Processes: Algorithmic Approaches and Applications to LIF Neuronal Model

  • Published:
Methodology and Computing in Applied Probability Aims and scope Submit manuscript

Abstract

Motivated by some unsolved problems of biological interest, such as the description of firing probability densities for Leaky Integrate-and-Fire neuronal models, we consider the first-passage-time problem for Gauss-diffusion processes along the line of Mehr and McFadden (J R Stat Soc B 27:505–522, 1965). This is essentially based on a space-time transformation, originally due to Doob (Ann Math Stat 20:393–403, 1949), by which any Gauss-Markov process can expressed in terms of the standard Wiener process. Starting with an analysis that pinpoints certain properties of mean and autocovariance of a Gauss-Markov process, we are led to the formulation of some numerical and time-asymptotically analytical methods for evaluating first-passage-time probability density functions for Gauss-diffusion processes. Implementations for neuronal models under various parameter choices of biological significance confirm the expected excellent accuracy of our methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrahams J (1984) Rump crossings for Slepian’s process. IEEE Trans Inf Theory 30(3):574–575

    Article  MATH  MathSciNet  Google Scholar 

  • Anderssen R, De Hoog F, Weiss R (1973) On the numerical solution of Brownian motion processes. J Appl Probab 10:409–418

    Article  MATH  Google Scholar 

  • Buonocore A, Caputo L, Pirozzi E (2008) On the evaluation of firing densities for periodically driven neuron models. Math Biosci 214:122–133

    Article  MATH  MathSciNet  Google Scholar 

  • Buonocore A, Nobile A, Ricciardi L (1987) A new integral equation for the evaluation of first-passage-time probability densities. Adv Appl Probab 19:784–800

    Article  MATH  MathSciNet  Google Scholar 

  • Daniels H (1969) The minimum of a stationary Markov process superimposed on a U-shaped trend. J Appl Probab 6:399–408

    Article  MATH  MathSciNet  Google Scholar 

  • Darling D, Siegert A (1953) The first passage time problem for a continuous Markov process. Ann Math Stat 24:624–639

    Article  MATH  MathSciNet  Google Scholar 

  • Di Crescenzo A, Nobile A (1995) Diffusion approssimation to queueing systems with time–dependent arrival and service rates. Queueing Syst 19:41–62

    Article  MATH  Google Scholar 

  • Di Crescenzo A, Giorno V, Nobile A, Ricciardi L (1997) On first-passage-time and transition densities for strongly symmetric diffusion processes. Nagoya Math J 145:143–161

    MATH  MathSciNet  Google Scholar 

  • Di Nardo E, Nobile A, Pirozzi ELR (2001) A computational approach to first-passage-time problems for Gauss-Markov processes. Adv Appl Probab 33:453–482

    Article  MATH  Google Scholar 

  • Doob J (1949) Heuristic approach to the Kolmogorov–Smirnov theorems. Ann Math Stat 20:393–403

    Article  MATH  MathSciNet  Google Scholar 

  • Durbin J (1971) Boundary-crossing probabilities for the Brownian motion and Poisson processes and techniques for computing the power of the Kolmogorov-Smirnov test. J Appl Probab 8:431–453

    Article  MATH  MathSciNet  Google Scholar 

  • Durbin J (1985) The first-passage density of a continuous Gauss process to a general boundary. J Appl Probab 22:99–122

    Article  MATH  MathSciNet  Google Scholar 

  • Favella L, Reineri M, Ricciardi L, Sacerdote L (1982) First-passage-time problems and some related computational methods. Cybernet Syst 13:95–128

    Article  MATH  MathSciNet  Google Scholar 

  • Fortet R (1943) Les fonctions aléatoires du type de Markoff associées à certaines équations lineáires aux dérivées partialles du type parabolique. J Math Pures Appl 22:177–243

    MATH  MathSciNet  Google Scholar 

  • Gerstein G, Mandelbrot B (1964) Random walk models for the spike activity of a single neuron. Biophys J 4:41–68

    Article  Google Scholar 

  • Giorno V, Nobile A, Ricciardi L (1986a) On some diffusion approximations to queueing systems. Adv Appl Probab 18(4):991–1014

    Article  MATH  MathSciNet  Google Scholar 

  • Giorno V, Nobile A, Ricciardi L, Sacerdote L (1986b) Some remarks on the Rayleigh process. J Appl Probab 23(2):398–408

    Article  MATH  MathSciNet  Google Scholar 

  • Giorno V, Nobile A, Ricciardi L (1987) On some time-non-homogeneous diffusion approximations to queueing systems. Adv Appl Probab 19(4):974–994

    Article  MATH  MathSciNet  Google Scholar 

  • Giorno V, Nobile A, Ricciardi L (1988) A new approach to the construction of first–passage–time densities. In: Trappl R (ed) Cybernetics and Systems. Kluwer, Dordrecht, pp 375–381

    Google Scholar 

  • Giorno V, Nobile A, Ricciardi L (1990) On the asymptotic behaviour of first-passage-time densities for one-dimensional diffusion processes and varying boundaries. Adv Appl Probab 22(4):883–914

    Article  MATH  MathSciNet  Google Scholar 

  • Giorno V, Nobile A, Pirozzi E, Ricciardi L (2006) On the construction of first-passage-time densities for diffusion processes. SCMJ 64(2):277–298

    MATH  MathSciNet  Google Scholar 

  • Giorno V, Nobile A, Ricciardi L, Sato S (1989) On the evaluation of first-passage-time probability densities via non-singular integral equations. Adv Appl Probab 21(1):20–36

    Article  MATH  MathSciNet  Google Scholar 

  • Gutiérrez Jáimez R, Román P, Torres Ruiz F (1995) A note on the Volterra integral equation for the first-passage time probability density. J Appl Probab 32:635–648

    Article  MATH  MathSciNet  Google Scholar 

  • Lánský P (1997) Sources of periodical force in noisy integrate-and-fire models of neuronal dynamics. Phys Rev E 55(2):2040–2043

    Article  Google Scholar 

  • Mehr C, McFadden J (1965) Certain properties of Gaussian processes and their first passage time. J R Stat Soc B 27:505–522

    MATH  MathSciNet  Google Scholar 

  • Nobile A, Pirozzi E, Ricciardi L (2006) On the two-boundary first-passage-time problem for Gauss-Markov processes. SCMJ 64(2):421–442

    MATH  MathSciNet  Google Scholar 

  • Nobile A, Pirozzi E, Ricciardi L (2007) On the estimation of first-passage time densities for a class of Gauss-Markov processes. LNCS 4739:146–153

    Google Scholar 

  • Redner S (2001) A guide to first-passage processes. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Ricciardi L (1976) On the transformation of diffusion processes into the Wiener process. J Math Anal Appl 54:185–199

    Article  MATH  MathSciNet  Google Scholar 

  • Ricciardi L, Lánský P (2002) Diffusion models of neuron activity. In: Arbib M (ed) The handbook of brain theory and neural networks. MIT, Cambridge, pp 343–348

    Google Scholar 

  • Ricciardi L, Di Crescenzo A, Giorno V, Nobile A (1999) An outline of theoretical and algorithmic approaches to first passage time problems with applications to biological modeling. Math Jpn 50:247–322

    MATH  Google Scholar 

  • Schindler M, Talkner P, Hänggi P (2004) Firing times statistics for driven neuron models: analytic expressions versus numerics. Phys Rev Lett 93(4):048102-1–048102-4

    Article  Google Scholar 

  • Schindler M, Talkner P, Hänggi P (2005) Escape rates in periodically driven Markov processes. Phys A 351:40–50

    Article  Google Scholar 

  • Siegert A (1951) On the first passage time probability problem. Phys Rev 81:617–623

    Article  MATH  MathSciNet  Google Scholar 

  • Stein R (1965) A theoretical analiysis of neuronal variability. Biophys J 5:173–194

    Article  Google Scholar 

  • Stein R (1967) Some models of neuronal variability. Biophys J 7:37–68

    Article  Google Scholar 

  • Tuckwell H (1989) Stochastic processes in the neurosciences. Society for Industrial and Applied Mathematics, Philadelphia

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi M. Ricciardi.

Additional information

This work has been supported in part by Gruppo Nazionale di Calcolo Scientifico of Istituto Nazionale di Alta Matematica and by the Campania Region.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buonocore, A., Caputo, L., Pirozzi, E. et al. The First Passage Time Problem for Gauss-Diffusion Processes: Algorithmic Approaches and Applications to LIF Neuronal Model. Methodol Comput Appl Probab 13, 29–57 (2011). https://doi.org/10.1007/s11009-009-9132-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11009-009-9132-8

Keywords

PACS

Mathematics Subject Classifications (2000)

AMS 2000 Subject Classifications

Navigation