Skip to main content
Log in

Alternative Promoters and Tissue-Specific Regulation of Mouse oct-1 Gene Transcription

  • Genomics. Transcriptomics. Proteomics
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The gene encoding mouse transcription factor Oct-1 contains two exons, 1U and 1L, at the 5′ end. Oct-1 mRNA from all tissues contains exon 1U, whereas exon 1L is found only in Oct-1 mRNA from mouse and human lymphoid cells. Upstream of 1U and 1L exons, the respective specific promoters, U and L, are located at a considerable distance from each other (67 kb in the mouse otf-1 locus). These regions differ in their structure. The region upstream from exon 1U contains numerous Sp1 sites, whereas the region upstream from exon 1L contains homeospecific NTAATNN sites and two octa sites ATGCAAAT recognized by transcription factors Oct-1, Oct-2, and by other POU domain-containing proteins. The octa and homeospecific sites promote autoregulation of the oct-1 gene. Transfection of U and L promoter fragments within pGL3 Basic plasmid or pGL3 Enhancer vector into lymphoid NS/0 myeloma cells or 10(1) fibroblasts showed that the L promoter activity was many times higher in the myeloma cells than in fibroblasts. Between the sites of translation and transcription initiation from the L promoter, a nucleotide sequence was identified whose elimination resulted in a significantly higher efficiency of transcription initiation from this promoter. Thus, the oct-1 gene contains at least two alternative promoters: the U promoter apparently provides for the constitutive synthesis of Oct-1 protein, whereas the L promoter manifests tissue specificity, contains octa sites, and appears to be self-regulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Herr W., Sturm R.A., Clerc R.G., Corcoran L.M., Baltimore D. 1988. The POU domain: A large conserved region in the mammalian pit-1, oct-1, oct-2, and C. elegans unc-86 gene products. Genes Dev. 2, 1513–1516.

    PubMed  CAS  Google Scholar 

  2. Falkner F.C., Zachau H.G. 1984. Correct transcription of immunoglobulin k-gene requires an upstream fragment containing conserved sequence elements. Nature. 310, 71–74.

    Article  PubMed  CAS  Google Scholar 

  3. Herr W., Cleary M. 1995. The POU domain: Versatility in transcriptional regulation by a flexible two-in-one DNA-binding domain. Genes Dev. 9, 1679–1693.

    PubMed  CAS  Google Scholar 

  4. Stepchenko A.G., Polyanovsky O.L. Interaction of Oct proteins with DNA. Mol. Biol. 30, 503–513.

  5. Phillips K., Luisi B. 2000. The virtuoso versatility: POU proteins that flex to fit. J. Mol. Biol. 302, 1023–1039.

    Article  PubMed  CAS  Google Scholar 

  6. Deyev I.E., Polanovsky O.L. 2004. oct genes and Oct proteins. Mol. Biol. 38, 48–55.

    Article  Google Scholar 

  7. Sytina E.V., Pankratova E.V. 2003. Transcription factor Oct-1: Plasticity and multifunctionality. Mol. Biol. 37, 775–767.

    Article  Google Scholar 

  8. Kim M.K., Lessoon-Wood L.A., Weintraub B.D., Chung J.H. 1996. A soluble transcription factor, Oct-1, is also found in the insoluble nuclear matrix and possesses silencing activity in its alanine-rich domain. Mol. Cell Biol. 16, 4366–4377.

    PubMed  CAS  Google Scholar 

  9. Veenstra G.J.C., Petrson-Maduro J., Mathu M.T., van der Vliet P.C., Destree O.H.J. 1998. Non-cell autonomus induction of apoptosis and loss of posterior structures by activation domain-specific interactions of Oct-1 in the Xenopus embryo. Cell Death Differ. 5, 774–784.

    Article  PubMed  CAS  Google Scholar 

  10. Veenstra G.J.C., van der Vliet P.C., Destree O.H.J. 1997. POU domain transcription factors in embryonic development. Mol. Biol. Repts. 24, 139–155.

    CAS  Google Scholar 

  11. Koyasu S., Hussey R.E., Clayton L.K., Lerne A. 1994. Targeted disruption within the CD3 zeta/phi/Oct-1 locus in mouse. EMBO J. 13, 784–797.

    PubMed  CAS  Google Scholar 

  12. Pankratova E.V., Deyev I.E., Polanovsky O.L. 2001. Tissue-specific splicing of the 5′ exons of the transcription factor Oct-1 gene. Mol. Biol. 35, 34–41.

    CAS  Google Scholar 

  13. Pankratova E.V., Deyev I.E., Zhenilo S.V., Polanovsky O.L. 2001. Tissue-specific isoforms of the ubiquitous transcription factor Oct-1. Mol. Genet. Genomics. 266, 239–245.

    PubMed  CAS  Google Scholar 

  14. Deyev I.E., Zhenilo S.V., Polanovsky O.L. 2003. Spliced oct-1 mRNA isoforms with untranslated exons and a partly deleted region coding for the POU-specific domain. Mol. Biol. 37, 139–146.

    Article  Google Scholar 

  15. Luchina N.N., Krivega I.V., Pankratova E.V. 2003. Human Oct-1 isoform has tissue-specific expression pattern similar to Oct-1. Immunol. Lett. 85, 237–241.

    Article  PubMed  CAS  Google Scholar 

  16. Manley J.L. 1984. In: Transcription and Translation. A Practical Approach. Eds Hames B.D., Higgins S.G. Oxford: IRL Press, 89–110.

    Google Scholar 

  17. Rubtsov P.M. 2000. Alternative promoters and RNA processing in expression of the eukaryotic genome. Mol. Biol. 34, 626–634.

    Article  CAS  Google Scholar 

  18. Landry J.-R., Mager D.L., Wilhelm B.T. 2003. Complex controls: The role of alternative promoters in mammalian genomes. Trends Genet. 19, 640–648.

    Article  PubMed  CAS  Google Scholar 

  19. Struhl G., Struhl K., Macdonald P.M. 1989. The gradient morphogen bicoid is a concentration-dependent transcriptional activator. Cell. 57, 1259–1273.

    Article  PubMed  CAS  Google Scholar 

  20. Schubart K., Massa S., Schubart D., Corcoran L.M., Rolink A.G., Matthias P. 2001. B cell development and immunoglobulin gene transcription in the absence of Oct-1 and OBF-1. Nature Immunol. 2, 784–797.

    Article  CAS  Google Scholar 

  21. Veenstra G.J.C. 1995. Dynamic and difftrential oct-1 expression during early Xenopus embryogenesis: Persistence of Oct-1 protein following down-regulation of the RNA. Mech. Devel. 50, 103–117.

    CAS  Google Scholar 

  22. He X., Treacy M.N., Simmons D.M., Ingraham H.A., Swanson L.W., Rosenfeld M.G. 1989. Expression of a large family of POU domain regulatory genes in mammalian brain development. Nature. 340, 35–42.

    Article  PubMed  CAS  Google Scholar 

  23. Zhenilo S.V., Deyev I.E., Serov S.M., Polanovsky O.L. 2003. Regulation of human oct-1 gene expression with the involvement of two promoters. Genetika. 39, 280–285.

    PubMed  CAS  Google Scholar 

  24. Zhenilo S., Deyev I., Serov S., Polanovsky O.L. 2003. Regulation of oct-1 gene is different in lymphoid and non-lymphoid cells. Biochimie. 85, 715–718.

    Article  PubMed  CAS  Google Scholar 

  25. Faisst S., Meyer S. 1992. Compilation of vertebrate-encoded transcription factors. Nucleic Acids Res. 20, 3–26.

    PubMed  CAS  Google Scholar 

  26. Ryan A.K., Rosenfeld M.G. 1997. POU domain family values: Flexibility partnership, and developmental codes. Genes Dev. 11, 1207–1225.

    PubMed  CAS  Google Scholar 

  27. Luo J., Roeder R.G. 1995. Cloning, functional characterization, and mechanism of action of the B-cell specific transcriptional co-activator OCA-B. Mol. Cell Biol. 15, 4115–4124.

    PubMed  CAS  Google Scholar 

  28. Gstaiger M., Knoepfel L., Georgiev O., Schaffner W., Hovens C.M. 1995. A B-cell coactivator of octamer-binding transcription factors. Nature. 373, 360–362.

    Article  PubMed  CAS  Google Scholar 

  29. Strubin M., Newell J.W., Matthias P. 1995. OBF-1 a novel B cell-specific coactivator that stimulates immunoglobulin promoter activity through association with octamer-binding proteins. Cell. 80, 497–506.

    Article  PubMed  CAS  Google Scholar 

  30. Zheng L., Roeder R.G., Luo Y. 2003. S phase activation of the histone H2B promoter by OCA-S, a coactivator complex that contains GAPDH as a key component. Cell. 114, 255–266.

    Article  PubMed  CAS  Google Scholar 

  31. Chominski P., Sacchi N. 1987. Single-step method of RNA isolation by acid guanidinium-phenol-chloroform extraction. Anal. Biochem. 162, 156–159.

    Google Scholar 

  32. Stepchenko A.G. 1992. The nucleotide sequence of mouse Oct-1 cDNA. Nucleic Acids Res. 20, 1419.

    PubMed  CAS  Google Scholar 

  33. Das G., Herr W. 1993. Enhanced activation of the human histone H2B promoter by an Oct-1 variant generated by alternative splicing. J. Biol. Chem. 288, 25026–25032.

    Google Scholar 

  34. Suzuki N., Peter W., Ciesiolka T., Gruss P., Scholer H.R. 1993. Mouse Oct-1 contains a composite homeodomain of human Oct-1 and Oct-2. Nucleic Acids Res. 21, 245–252.

    PubMed  CAS  Google Scholar 

  35. Wang Y., Newton D.C., Robb G.B., Kau C.-L., Miller T.L., Cheung A.H., Hall A.V., van Damme S., Wilcox J.N., Marsden P.H. 1999. RNA diversity has profound effects on the translation of neuronal oxide synhthase. Proc. Natl. Acad. Sci. USA. 96, 12150–12155.

    PubMed  CAS  Google Scholar 

  36. Orladnova O., Syagailo Y.V., Mossner R., Riederer P., Lesh K.P. 1998. Regulation of Pax-6 gene transcription: Alternative promoter usage in human brain. Brain Res. Mol. Res. 60, 177–192.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Molekulyarnaya Biologiya, Vol. 39, No. 6, 2005, pp. 952–959.

Original Russian Text Copyright © 2005 by Pankratova, Sytina, Stepchenko, Manuylova, Polanovsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pankratova, E.V., Sytina, E.V., Stepchenko, A.G. et al. Alternative Promoters and Tissue-Specific Regulation of Mouse oct-1 Gene Transcription. Mol Biol 39, 833–839 (2005). https://doi.org/10.1007/s11008-005-0102-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11008-005-0102-0

Key words

Navigation