Skip to main content
Log in

Supersymmetric Kundt four manifolds and their spinorial evolution flows

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We investigate the differential geometry and topology of four-dimensional Lorentzian manifolds (Mg) equipped with a real Killing spinor \(\varepsilon \), where \(\varepsilon \) is defined as a section of a bundle of irreducible real Clifford modules satisfying the Killing spinor equation with nonzero real constant. Such triples \((M,g,\varepsilon )\) are precisely the supersymmetric configurations of minimal AdS four-dimensional supergravity and necessarily belong to the class Kundt of space-times, hence we refer to them as supersymmetric Kundt configurations. We characterize a class of Lorentzian metrics on \(\mathbb {R}^2\times X\), where X is a two-dimensional oriented manifold, to which every supersymmetric Kundt configuration is locally isometric, proving that X must be an elementary hyperbolic Riemann surface when equipped with the natural induced metric. This yields a class of space-times that vastly generalize the Siklos class of space-times describing gravitational waves in AdS\(_4\). Furthermore, we study the Cauchy problem posed by a real Killing spinor and we prove that the corresponding evolution problem is equivalent to a system of differential flow equations, the real Killing spinorial flow equations, for a family of functions and coframes on any Cauchy hypersurface \(\Sigma \subset M\). Using this formulation, we prove that the evolution flow defined by a real Killing spinor preserves the Hamiltonian and momentum constraints of the Einstein equation with negative curvature and is therefore compatible with the latter. Moreover, we explicitly construct all left-invariant evolution flows defined by a Killing spinor on a simply connected three-dimensional Lie group, classifying along the way all solutions to the corresponding constraint equations, some of which also satisfy the constraint equations associated to the Einstein condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

This manuscript has no associated data.

Notes

  1. Observe that the associated real Killing spinor \(\varepsilon \) can be completely reconstructed from \(\left\{ \beta _t, \mathfrak {e}^t\right\} _{t\in \mathcal {I}}\), although its explicit expression is not of relevance for us.

  2. The notation \(\tau _2 \oplus \mathbb {R}\) and \(\tau _{3,\mu }\) is adopted from [34].

  3. The third column of the Table should be understood as the additional condition that a Killing Cauchy pair has to satisfy in order to be constrained Einstein.

  4. We shall denote \(\left\{ \beta _t \right\} _{t\in \mathcal {I}}\) equivalently as \(\left\{ \beta ^t \right\} _{t\in \mathcal {I}}\) to unify notation along the section.

  5. Note that \( {}_2F_1 \left( \frac{1}{2}, \frac{1}{6}; \frac{7}{6};0 \right) =\frac{ \sqrt{\pi } \, \Gamma \left( 7/6\right) }{\Gamma \left( 2/3 \right) }\).

References

  1. Alonso-Alberca, N., Lozano-Tellechea, E., Ortin, T.: Geometric construction of Killing spinors and supersymmetry algebras in homogeneous space-times. Class. Quantum Gravity 19, 6009–6024 (2002)

  2. Babalic, E.M., Coman, I.A., Lazaroiu, C.I.: Geometric algebra techniques in flux compactifications. Adv. High Energy Phys. 2016, 7292534 (2016)

    MATH  Google Scholar 

  3. Bär, Christian, Gauduchon, Paul, Moroianu, Andrei: Generalized cylinders in semi-Riemannian and spin geometry. Math. Z. 249, 545–580 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baum, H.: Lorentzian twistor spinors and CR-geometry. Diff. Geom. Appl. 11(1), 69–96 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baum, H.: Twistor spinors on Lorentzian symmetric spaces. J. Geom. Phys. 34, 270–286 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Baum, H., Leistner, T., Lischewski, A.: Cauchy problems for Lorentzian manifolds with special holonomy. Differ. Geom. Appl. 45, 43–66 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baum, H., Lischewski, A.: Lorentzian Geometry—Holonomy, Spinors, and Cauchy Problems. In: Cortés, V., Kröncke, K., Louis, J. (eds.) Geometric Flows and the Geometry of Space-time, Birkhäuser (2018)

  8. Bernal, A.N., Sanchez, M.: On smooth Cauchy hypersurfaces and Geroch’s splitting theorem. Commun. Math. Phys. 243, 461 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Bicak, J., Podolsky, J.: Gravitational waves in vacuum space-times with cosmological constant. 1. Classification and geometrical properties of nontwisting type N solutions. J. Math. Phys. 40, 4495–4505 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Bicak, J., Podolsky, J.: Gravitational waves in vacuum space-times with cosmological constant. 2. Deviation of geodesics and interpretation of nontwisting type N solutions. J. Math. Phys. 40, 4506–4517 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Bohle, C.: Killing spinors on Lorentzian manifolds. J. Geom. Phys. 45(3–4), 285–308 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Brannlund, J., Coley, A., Hervik, S.: Supersymmetry, holonomy and Kundt spacetimes. Class. Quantum Gravity 25, 195007 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Brinkmann, H.W.: Einstein spaces which are mapped conformally on each other. Math. Ann. 94, 119–145 (1925)

    Article  MathSciNet  MATH  Google Scholar 

  14. Calvaruso, G., Kaflow, M., Zaeim, A.: On the symmetries of Siklos spacetimes. Gen. Relativ. Gravit. 54, 60 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Candela, A.M., Flores, J.L., Sanchez, M.: On general plane fronted waves: geodesics. Gen. Relativ. Gravit. 35, 631–649 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Chandrasekhar, S.: The Mathematical Theory of Black Holes. Oxford University Press (1998)

    Book  MATH  Google Scholar 

  17. Coley, A., Hervik, S., Papadopoulos, G., Pelavas, N.: Kundt Spacetimes. Class. Quantum Gravity 26, 105016 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Conti, D., Dalmasso, R.S.: Killing spinors and hypersurfaces, preprint arXiv:2111.13202v2

  19. Choquet-Bruhat, Y.: Théoréme d’existence pour certains systémes d’équations aux derivées partielles non linéaires. Acta Math. 88, 141–225 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Choquet-Bruhat, Y.: General Relativity and the Einstein Equations. Oxford Mathematical Monographs (2008)

    Book  MATH  Google Scholar 

  21. Cortés, V., Kröncke, K., Louis, J., (eds.) Geometric Flows and the Geometry of Space-time, Birkhäuser (2018)

  22. Coddington, E.A., Levinson, N.: Theory of ordinary differential equations. Pure & Applied Mathematics. McGraw-Hill Education (1984)

  23. Cortés, V., Lazaroiu, C., Shahbazi, C.S.: Spinors of real type as polyforms and the generalized Killing equation. Math. Z. 299, 1351–1419 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ehlers, J., Kundt, W.: Exact solutions of the gravitational field equations. In: Witten, L. (ed.) Gravitation: An Introduction to Current Research, pp. 49–101. Wiley (1962)

  25. Figueroa-O’Farrill, J.: On the intrinsic torsion of spacetime structures, preprint arXiv:2009.01948

  26. Fino, A., Leistner, T., Taghavi-Chabert, A.: Optical geometries, preprint arXiv:2009.10012

  27. Flores, J.L., Sanchez, M.: On the geometry of PP-wave type spacetimes. Lect. Notes Phys. 692, 79–98 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Freibert, M.: Cocalibrated \(G_2\)-structures on products of four- and three-dimensional Lie groups. Differ. Geom. Appl. 31, 349–373 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Galaev, A.S., Leistner, T.: On the local structure of Lorentzian Einstein manifolds with parallel distribution of null lines. Class. Quantum Gravity 27, 225003 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Gibbons, G.W., Ruback, P.J.: Classical gravitons and their stability in higher dimensions. Phys. Lett. B 171, 390–395 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  31. Gran, U., Gutowski, J., Papadopoulos, G.: Classification, geometry and applications of supersymmetric backgrounds. Phys. Rep. 794, 1–87 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  32. Gibbons, G.W., Pope, C.N.: Time-dependent multi-centre solutions from new metrics with holonomy SIM(n-2). Class. Quantum Gravity 25, 125015 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Gibbons, G.W., Warner, N.P.: Global structure of five-dimensional fuzzballs. Class. Quantum Gravity 31, 025016 (2014)

    Article  ADS  MATH  Google Scholar 

  34. Gorbatsevich, V., Onishchik, A., Vinberg, E.: Lie Groups and Lie Algebras, III: Structure of Lie Groups and Lie Algebras, Encyclopaedia Math. Sci., vol. 41. Springer-Verlag, Berlin (1994)

  35. Griffiths, J.B., Docherty, P., Podolsky, J.: Generalized Kundt waves and their physical interpretation. Class. Quantum Gravity 21, 207–222 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Kundt, W.: The plane-fronted gravitational waves. Z. Phys. 163, 77 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  37. Lazaroiu, C., Shahbazi, C.S.: Real spinor bundles and real Lipschitz structures. Asian J. Math. 23(5) (2019)

  38. Lazaroiu, C.I., Shahbazi, C.S.: Complex Lipschitz structures and bundles of complex Clifford modules. Differ. Geom. Appl. 61, 147–169 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lazaroiu, C.I., Shahbazi, C.S.: Dirac operators on real spinor bundles of complex type. Differ. Geom. Appl. 80, 101849 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  40. Leistner, T., Lischewski, A.: Hyperbolic evolution equations, Lorentzian holonomy, and Riemannian generalised Killing spinors. J. Geom. Anal. 29, 33–82 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  41. Leitner, F.: Imaginary Killing spinors in Lorentzian geometry. J. Math. Phys. 44, 4795 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Lewandowski, J.: Twistor equation in a curved space-time. Class. Quantum Gravity 8, L11–L18 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Lischewski, A.: The Cauchy problem for parallel spinors as first-order symmetric hyperbolic system. arXiv:1503.04946 [math.DG]

  44. Meliania, A., Boucettab, M., Zeghib, A.: Kundt Three Dimensional Left Invariant Spacetimes. preprint arXiv:2203.06379v1

  45. Milnor, J.: Curvatures of left invariant metrics on Lie groups. Adv. Math. 21, 293–329 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  46. Morel, B.: Surfaces in \(S^3\) and \(\mathbb{H} ^3\) via spinors. Séminaire de théorie spectrale et géométrie 23, 131–144 (2005)

    Article  Google Scholar 

  47. Murcia, Á., Shahbazi, C.S.: Parallel spinors on globally hyperbolic Lorentzian four-manifolds. Ann. Glob. Anal. Geom. 61(2), 1–40

  48. Murcia, Á., Shahbazi, C.S.: Parallel spinor flows on three-dimensional Cauchy hypersurfaces. preprint arXiv:2109.13906

  49. Niehoff, B.E., Reall, H.S.: Evanescent ergosurfaces and ambipolar hyperkähler metrics. JHEP 04, 130 (2016)

    ADS  MATH  Google Scholar 

  50. Ortín, T.: Gravity and Strings. Cambridge Monographs on Mathematical Physics, 2nd edition (2015)

  51. Papadopoulos, G.: Geometry and symmetries of null G-structures. Class. Quantum Gravity 36(12), 125006 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Podolsky, J.: Interpretation of the Siklos solutions as exact gravitational waves in the anti-de Sitter universe. Class. Quantum Gravity 15, 719–733 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Podolsky, J., Griffiths, J.B.: Nonexpanding impulsive gravitational waves with an arbitrary cosmological constant. Phys. Lett. A 261, 1–4 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Podolsky, J.: Exact impulsive gravitational waves in space-times of constant curvature. Gravitation: Following the Prague Inspiration, pp. 205–246 (2002)

  55. Podolsky, J., Ortaggio, M.: Explicit Kundt type II and N solutions as gravitational waves in various type D and 0 universes. Class. Quantum Gravity 20, 1685–1701 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Podolsky, J., Prikryl, O.: On conformally flat and type N pure radiation metrics. Gen. Relativ. Gravit. 41, 1069–1081 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Siklos, S.T.: Axisymmetric Systems and Relativity. In: MacCallum, M.A.H. (ed.) Cambridge University Press (1985)

  58. Stephani, H., Kramer, D., MacCallum, M.A.H., Hoenselaers, C.A., Herlt, E.: Exact solutions of Einstein’s field equations. In: MacCallum, M.A.H. (eds.) Cambridge University Press (2003)

  59. Tod, K.P.: All metrics admitting super-covariantly constant spinors. Phys. Lett. B 121(4) (1983)

Download references

Acknowledgements

We would like to thank Bernardo Araneda, Diego Conti, Antonio F. Costa and Romeo Segnan Dalmasso for useful discussions, Calin Lazaroiu for reading a preliminary version of the draft and proposing several improvements and Patrick Meessen for various insightful remarks and pointers. The work of Á.M. was funded by the Spanish FPU Grant No. FPU17/04964 and by the Istituto Nazionale di Fisica Nucleare (INFN), through the INFN Call No. 23590. Á.M. also received additional support from the MCIU/AEI/FEDER UE grant PID2021-125700NB-C21. CSS’s research was funded by the María Zambrano Excellency Program 468806966 of the Kingdom of Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ángel Murcia.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murcia, Á., Shahbazi, C.S. Supersymmetric Kundt four manifolds and their spinorial evolution flows. Lett Math Phys 113, 106 (2023). https://doi.org/10.1007/s11005-023-01728-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-023-01728-1

Keywords

Mathematics Subject Classification

Navigation