Skip to main content
Log in

Solution of the Jacobi inversion problem on non-hyperelliptic curves

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we propose a method of solving the Jacobi inversion problem in terms of multiply periodic \(\wp \) functions, also called Kleinian \(\wp \) functions. This result is based on the recently developed theory of multivariable sigma functions for (ns)-curves. Considering (ns)-curves as canonical representatives in the corresponding classes of bi-rationally equivalent plane algebraic curves, we claim that the Jacobi inversion problem on plane algebraic curves is solved completely. Explicit solutions on trigonal, tetragonal and pentagonal curves are given as an illustration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. A solution of the Jacobi inversion problem is supposed to be a divisor of degree equal to the genus of a curve. If a divisor of degree greater than the genus of a curve is required, then the problem of inverting Abel’s map is called the extended Jacobi inversion problem.

  2. The given formulas are obtained with the following differentials of the first and second kinds

    $$\begin{aligned} \textrm{d}u_1&= \frac{x\,\textrm{d}x}{-2y},\quad \textrm{d}r_3 = \frac{x^2 \textrm{d}x}{-2y},\\ \textrm{d}u_3&= \frac{\textrm{d}x}{-2y},\quad \textrm{d}r_1 = (3x^3 +\lambda _4 x) \frac{\textrm{d}x}{-2y}. \end{aligned}$$
  3. A \((2,2g+1)\)-curve serves as a canonical form of hyperelliptic curves of genus g.

  4. We say that n points \((a,b_k)\), \(k=1\), ..., n, are connected by involution of an (ns)-curve \(f(x,y)=0\) if \(b_k\) give all solutions of f(ay)=0.

  5. The reader can find a solution of the regularization problem for integrals of the second kind on non-hyperelliptic curves in [5], in particular, \(c_1 = 0\), \(c_2 = -\lambda _2/3\) on \(\mathcal {V}_{(3,4)}\), and \(c_1 = 0\), \(c_2 = -2\lambda _2/3\) on \(\mathcal {V}_{(3,7)}\).

References

  1. Audin, M.: Spinning tops: A course on integrable systems Studies in Advanced Mathematics. Cambridge University Press, USA (1999)

    MATH  Google Scholar 

  2. Baker, H.F.: Abelian functions: Abel’s theorem and the allied theory of theta functions. University Press, Cambridge, Cambridge (1897)

    Book  MATH  Google Scholar 

  3. Baker, H.F.: An introduction to the theory of multiply periodic functions. University Press, Cambridge (1907)

    MATH  Google Scholar 

  4. Belokolos, E.D., Bobenko, A.I., Enolski, V.Z., Its, A.R., Matveev, V.B.: Algebro-geometric approach to nonlinear integrable equations. Springer, Newyork (1994)

    MATH  Google Scholar 

  5. Bernatska, J., Leykin, D.: On regularization of second kind integrals. SIGMA 14, 074, 28 (2018). arXiv:1709.10167

    MathSciNet  MATH  Google Scholar 

  6. Bernatska, J., Leykin, D.: On degenerate sigma-functions of genus two. Glasgow Math. J. 61, 169–193 (2019). arXiv:1509.01490

    Article  MathSciNet  MATH  Google Scholar 

  7. Braden, H.W., Fedorov, Yu.N.: An extended Abel-Jacobi map. J Geom Phys 58, 1346–1354 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Buchstaber, V.M., Enolskii, V.Z., Leykin, D.V.: Hyperelliptic Kleinian functions and applications, preprint ESI 380, Vienna (1996)

  9. Buchstaber, V.M., Enolskii, V.Z., Leykin, D.V.: Multi-dimensional sigma functions, arXiv:1208.0990

  10. Buchstaber, V.M., Enolskii, V.Z., Leykin, D.V.: Uniformization of Jacobi varieties of trigonal curves and nonlinear differential equations. Funct Anal Appl 34, 159–171 (2000)

    Article  MathSciNet  Google Scholar 

  11. Buchstaber, V.M., Enolskii, V.Z., Leykin, D.V.: Rational analogs of abelian functions. Funct Anal Appl 33, 2 (1999)

    Article  Google Scholar 

  12. Buchstaber, V.M., Leykin, D.V.: Polynomial Lie algebras. Funct Anal Appl 36(4), 267–280 (2002)

    Article  MathSciNet  Google Scholar 

  13. Buchstaber, V.M., Leykin, D.V.: Heat equations in a nonholonomic frame. Funct Anal Appl 38(2), 88–101 (2004)

    Article  MathSciNet  Google Scholar 

  14. Buchstaber, V.M., Leykin, D.V.: Solution of the problem of differentiation of abelian functions over parameters for families of \((n, s)\)-curves. Funct Anal Appl 42(4), 268–278 (2008)

    Article  MathSciNet  Google Scholar 

  15. Eilbeck, J.C. , Gibbons, J., Ônishi, Y., Yasuda, S.: Theory of heat equations for sigma functions, 47 p., arXiv:1711.08395

  16. Farkas, H.M., Kra, I.: Riemann surfaces. Springer, New York (1980)

    Book  MATH  Google Scholar 

  17. Fedorov, Y.: Classical integrable systems and Billiards related to generalized Jacobians. Acta Appl. Math. 55, 251–301 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Klein, F.: Uber hyperelliptische Sigmafunktionen Erster Aufsatz), Gesammelte mathematische Abhandlungen, Band 3. Springer, Berlin (1923)

    Google Scholar 

  19. Komeda, J., Matsutani, S., Previato, E.: Algebraic Construction of the Sigma Function for General Weierstrass Curves. Mathematics (MDPI) 10, 16, 3010 (2022)

    Google Scholar 

  20. Komeda, J., Matsutani, S., Previato, E.: Complementary Modules of Weierstrass Canonical Forms. SIGMA 18, 098, 39 (2022)

    MathSciNet  MATH  Google Scholar 

  21. Matsutani, S., Komeda, J.: Sigma functions for a space curve of type \((3,4,5)\). J. Geom. Symmetry Phys. 30, 75–91 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Weierstrass, K.: Formeln und Lehrsätze zum Gebrauche der elliptischen Functionen, nach Vorlesungen und Aufzeichnungen des, 2nd edn. Springer, Berlin (1893)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Bernatska.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernatska, J., Leykin, D. Solution of the Jacobi inversion problem on non-hyperelliptic curves. Lett Math Phys 113, 110 (2023). https://doi.org/10.1007/s11005-023-01726-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-023-01726-3

Keywords

Mathematics Subject Classification

Navigation