Skip to main content
Log in

A numerical study of two-point correlation functions of the two-periodic weighted Aztec diamond in mesoscopic limit

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

In Bain (J Math Phys 64(2):023301, 2023. https://doi.org/10.1063/5.0097256), we found asymptotics of one-point correlation functions of the two-periodic weighted Aztec diamond in the mesoscopic limit, where the linear size of the ordered region is of the same order as the correlation length. In this paper, we follow up with a numerical study of two-point correlation functions of dimers separated by a mesoscopic distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Bain, E.: Local correlation functions of the two-periodic weighted Aztec diamond in mesoscopic limit. J. Math. Phys. 64(2), 023301 (2023). https://doi.org/10.1063/5.0097256

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Thurston, W.P.: Conway’s tiling groups. Am. Math. Mon. 97(8), 757–773 (1990). https://doi.org/10.1080/00029890.1990.11995660

    Article  MathSciNet  MATH  Google Scholar 

  3. Cohn, H., Kenyon, R., Propp, J.: A variational principle for domino tilings. J. Am. Math. Soc. 14(2), 297–346 (2000). https://doi.org/10.1090/s0894-0347-00-00355-6

    Article  MathSciNet  MATH  Google Scholar 

  4. Kenyon, R., Okounkov, A.: Limit shapes and the complex burgers equation. Acta Math. 199(2), 263–302 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Astala, K., Duse, E., Prause, I., Zhong, X.: Dimer models and conformal structures. arXiv: Analysis of PDEs (2020)

  6. Elkies, N., Kuperberg, G., Larsen, M., Propp, J.: Alternating sign matrices and domino tilings I. J. Algebr. Combin. 1, 111–132 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Elkies, N., Kuperberg, G., Larsen, M., Propp, J.: Alternating sign matrices and domino tilings II. J. Algebr. Combin. 1, 219–234 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chhita, S., Young, B.: Coupling functions for domino tilings of Aztec diamonds. Adv. Math. 259, 173–251 (2014). https://doi.org/10.1016/j.aim.2014.01.023

    Article  MathSciNet  MATH  Google Scholar 

  9. Francesco, P.D., Soto-Garrido, R.: Arctic curves of the octahedron equation. J. Phys. A Math. Theor. 47(28), 285204 (2014). https://doi.org/10.1088/1751-8113/47/28/285204

    Article  MathSciNet  MATH  Google Scholar 

  10. Johansson, K.: The arctic circle boundary and the Airy process. Ann. Probab. 33(1), 1–30 (2005). https://doi.org/10.1214/009117904000000937

    Article  MathSciNet  MATH  Google Scholar 

  11. Chhita, S., Johansson, K.: Domino statistics of the two-periodic Aztec diamond. Adv. Math. 294, 37–149 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Duits, M., Kuijlaars, A.B.J.: The two periodic Aztec diamond and matrix valued orthogonal polynomials. J. Eur. Math. Soc. (JEMS) 23(4), 1075–1131 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  13. Berggren, T., Duits, M.: Correlation functions for determinantal processes defined by infinite block toeplitz minors. Adv. Math. 356, 106766 (2019). https://doi.org/10.1016/j.aim.2019.106766

    Article  MathSciNet  MATH  Google Scholar 

  14. Johansson, K.: Edge fluctuations of limit shapes. Curr. Dev. Math. 2016, 47–110 (2017)

    Article  MATH  Google Scholar 

  15. Beffara, V., Chhita, S., Johansson, K.: Airy point process at the liquid-gas boundary. Ann. Probab. 46(5), 2973–3013 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Beffara, V., Chhita, S., Johansson, K.: Local geometry of the rough-smooth interface in the two-periodic Aztec diamond. Ann. Appl. Probab. 32(2), 974–1017 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  17. Johansson, K., Mason, S.: Dimer-dimer correlations at the rough-smooth boundary. Commun. Math. Phys. (2023). https://doi.org/10.1007/s00220-023-04649-1

    Article  MathSciNet  MATH  Google Scholar 

  18. Johansson, K., Mason, S.: Airy process at a thin rough region between frozen and smooth. arXiv (2023). https://doi.org/10.48550/ARXIV.2302.04663 . https://arxiv.org/abs/2302.04663

  19. Belov, P.A., Reshetikhin, N.: The two-point correlation function in the six-vertex model. J. Phys. A Math. Theor. 55, 155001 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Kenyon, R., Okounkov, A., Sheffield, S.: Dimers and amoebae. Ann. Math. 163(3), 1019–1056 (2006). https://doi.org/10.4007/annals.2006.163.1019

    Article  MathSciNet  MATH  Google Scholar 

  21. Kenyon, R.: Local statistics of lattice dimers. Ann. Inst. Henri Poincare (B) Probab. Stat. 33(5), 591–618 (1997). https://doi.org/10.1016/s0246-0203(97)80106-9

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Mason, S.: Two-periodic weighted dominos and the sine-Gordon field at the free fermion point: I. arXiv (2022). https://doi.org/10.48550/ARXIV.2209.11111 . https://arxiv.org/abs/2209.11111

  23. Keating, D., Sridhar, A.: GitHub (2018). https://github.com/GPUTilings

  24. Keating, D., Sridhar, A.: Random tilings with the GPU. J. Math. Phys. 59(9), 091420 (2018). https://doi.org/10.1063/1.5038732

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was partly supported by NSF Grant DMS-1902226. We are grateful to Nicolai Reshetikhin for guidance during the course of this work. We used code based on the source code developed by Keating and Sridhar [23] to simulate domino tilings. We thank Scott Mason for correspondence which resulted in a simplification of the paper. We are grateful to the Yau Mathematical Sciences Center, Tsinghua University, where much of this work was completed. This research used the Savio computational cluster resource provided by the Berkeley Research Computing program at the University of California, Berkeley (supported by the UC Berkeley Chancellor, Vice Chancellor for Research, and Chief Information Officer).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily Bain.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A Definition of \({\mathcal {I}}^{j,k}_{{\varepsilon _1},{\varepsilon _2}} (a, x_1, x_2, y_1, y_2)\)

Appendix A Definition of \({\mathcal {I}}^{j,k}_{{\varepsilon _1},{\varepsilon _2}} (a, x_1, x_2, y_1, y_2)\)

Let

$$\begin{aligned}c = \frac{1}{a + a^{-1}}.\end{aligned}$$

For \(\omega \in {\mathbb {C}}\setminus i[-\sqrt{2c},\sqrt{2c}]\) we define

$$\begin{aligned} \sqrt{\omega ^2 + 2c} = i\sqrt{-i(\omega + i\sqrt{2c})}\sqrt{-i(\omega - i \sqrt{2c})} \end{aligned}$$

where the square roots on the right hand side are the principal branch of the square root. Define

$$\begin{aligned} G(\omega ) = \frac{1}{\sqrt{2c}}(\omega - \sqrt{\omega ^2 + 2c}). \end{aligned}$$

For even \(x_1, x_2\) with \(0< x_1,x_2 < 2n\) define

$$\begin{aligned} {\widetilde{H}}_{x_1,x_2}(\omega ) = \frac{\omega ^{2m}(-iG(\omega ))^{2m - x_1/2}}{(iG(\omega ^{-1}))^{2m-x_2/2}}. \end{aligned}$$

For \(j,k,{\varepsilon _1},{\varepsilon _2} \in \{0,1\}\), define

$$\begin{aligned} V^{j,k}_{{\varepsilon _1}, {\varepsilon _2}} ({\omega _1}, {\omega _2}) = \frac{1}{2}\sum _{\gamma _1,\gamma _2=0}^1 (-1)^{\gamma _2 j + \gamma _1 k}(Q_{\gamma _1,\gamma _2}^{{\varepsilon _1},{\varepsilon _2}}(\omega _1,\omega _2) + (-1)^{{\varepsilon _2}+1}Q_{\gamma _1,\gamma _2}^{{\varepsilon _1},{\varepsilon _2}}(\omega _1,-\omega _2)) \end{aligned}$$

where the functions \(Q_{\gamma _1,\gamma _2}^{{\varepsilon _1},{\varepsilon _2}}(\omega _1,\omega _2)\) are defined as follows. Let

$$\begin{aligned} f_{a,b}(u, v)= & {} (2a^2 uv + 2b^2 uv -ab(-1+u^2)(-1+v^2)) (2a^2 uv \nonumber \\{} & {} + 2b^2 uv +ab(-1+u^2)(-1+v^2)). \end{aligned}$$

Now we define the following rational functions. We temporarily consider weights a and b where b is not necessarily 1. Let

$$\begin{aligned} \begin{aligned} \textrm{y}_{0,0}^{0,0}(a,b,u,v)&= \frac{1}{4(a^2+b^2)^2 f_{a,b}(u, v)}(2a^7 u^2 v^2 - a^5 b^2(1 + u^4\\&\quad + u^2v^2 - u^4v^2 + v^4 - u^2v^4)\\&\quad - a^3 b^4(1+3u^2 + 3v^2 + 2u^2v^2 + u^4v^2 + u^2v^4 - u^4v^4) \\&\quad - a b^6(1+v^2+u^2+3u^2v^2)) \\ \textrm{y}_{0,1}^{0,0}(a,b,u,v)&= \frac{a}{4(a^2 + b^2)f_{a,b}(u, v)}(b^2 + a^2u^2)(2a^2v^2 + b^2(1 + v^2 - u^2 + u^2v^2)) \\ \textrm{y}_{1,0}^{0,0}(a,b,u,v)&= \frac{a}{4(a^2+b^2)f_{a,b}(u, v)}(b^2 + a^2v^2)(2a^2u^2 + b^2(1 - u^2 + v^2 + u^2v^2)) \\ \textrm{y}_{1,1}^{0,0}(a,b,u,v)&= \frac{a}{4f_{a,b}(u, v)}(2a^2u^2v^2 +b^2(- 1 + v^2 + u^2 + u^2v^2)). \end{aligned} \end{aligned}$$

For \(\gamma _1,\gamma _2 \in \{0,1\}\) we define

$$\begin{aligned} \begin{aligned} \textrm{y}_{\gamma _1,\gamma _2}^{0,1}(a,b,u,v)&= \frac{\textrm{y}_{\gamma _1,\gamma _2}^{0,0}(b,a, u,v^{-1})}{v^2} \\ \textrm{y}_{\gamma _1,\gamma _2}^{1,0}(a,b,u,v)&= \frac{\textrm{y}_{\gamma _1,\gamma _2}^{0,0}(b,a,u^{-1},v)}{u^2} \\ \textrm{y}_{\gamma _1,\gamma _2}^{1,1}(a,b,u,v)&= \frac{\textrm{y}_{\gamma _1,\gamma _2}^{0,0}(a,b,u^{-1},v^{-1})}{v^2}. \end{aligned} \end{aligned}$$

When \(b=1\), we write \(\textrm{y}^{{\varepsilon _1},{\varepsilon _2}}_{\gamma _1,\gamma _2}(u,v) = \textrm{y}^{{\varepsilon _1},{\varepsilon _2}}_{\gamma _1,\gamma _2}(a,1,u,v) \). Then, define

$$\begin{aligned} \textrm{x}_{{\gamma _1}, {\gamma _2}}^{{\varepsilon _1}, {\varepsilon _2}}({\omega _1}, {\omega _2}) = \frac{G({\omega _1}) G({\omega _2})}{\prod _{i=1}^2 \sqrt{\omega _i^2 +2c} \sqrt{\omega _i^{-2} + 2c}} \text {y}_{{\gamma _1}, {\gamma _2}}^{{\varepsilon _1}, {\varepsilon _2}} (G({\omega _1}), G({\omega _2}))(1 - {\omega _1}^2{\omega _2}^2). \end{aligned}$$

and

$$\begin{aligned} Q_{{\gamma _1},{\gamma _2}}^{{\varepsilon _1},{\varepsilon _2}}({\omega _1},{\omega _2})&= (-1)^{{\varepsilon _1}+{\varepsilon _2}+{\varepsilon _1}{\varepsilon _2} + {\gamma _1}(1+{\varepsilon _2}) + {\gamma _2}(1+{\varepsilon _1})}\\&\quad \times t({\omega _1})^{{\gamma _1}}t({\omega _2}^{-1})^{{\gamma _2}} G({\omega _1})^{\varepsilon _1} G({\omega _2}^{-1})^{\varepsilon _2} \textrm{x}_{{\gamma _1}, {\gamma _2}}^{{\varepsilon _1}, {\varepsilon _2}}({\omega _1}, {\omega _2}^{-1}) \end{aligned}$$

where \(t(\omega )\) is defined by

$$\begin{aligned} t(\omega ) = \omega \sqrt{\omega ^{-2} + 2c}. \end{aligned}$$

For \(x = (x_1,x_2) \in \texttt{W}_{\varepsilon _1},\) and \(y = (y_1,y_2) \in \texttt{B}_{\varepsilon _2}\) with \({\varepsilon _1},{\varepsilon _2}\in \{0,1\}\), define

$$\begin{aligned} \begin{aligned} h_{0,0}({\omega _1},{\omega _2})&= \frac{{\widetilde{H}}_{x_1 + 1, x_2}({\omega _1})}{{\widetilde{H}}_{y_1, y_2 + 1}({\omega _2})}\\ h_{1,0}({\omega _1},{\omega _2})&= \frac{{\widetilde{H}}_{x_1 + 1, x_2}({\omega _1})}{{\widetilde{H}}_{2n-y_1, y_2 + 1}({\omega _2})} \\ h_{0,1}({\omega _1},{\omega _2})&= \frac{{\widetilde{H}}_{x_1 + 1, 2n - x_2}({\omega _1})}{{\widetilde{H}}_{y_1, y_2 + 1}({\omega _2})} \\ h_{1,1}({\omega _1},{\omega _2})&= \frac{{\widetilde{H}}_{x_1 + 1, 2n - x_2}({\omega _1})}{{\widetilde{H}}_{2n-y_1, y_2 + 1}({\omega _2})} \end{aligned} \end{aligned}$$

Let \(C_r\) denote a positively-oriented contour of radius r centered at the origin. For \(a < 1\), \(\sqrt{2c}< r < 1\) and \(x = (x_1,x_2) \in \texttt{W}_{\varepsilon _1},\, y = (y_1,y_2) \in \texttt{B}_{\varepsilon _2}\) with \({\varepsilon _1},{\varepsilon _2}\in \{0,1\}\) define

$$\begin{aligned} {\mathcal {I}}^{j,k}_{{\varepsilon _1},{\varepsilon _2}} (a, x_1, x_2, y_1, y_2)&= \frac{i^{y_1-x_1}}{(2\pi i)^2} \int _{C_r} \frac{d{\omega _1}}{{\omega _1}} \int _{C_{1/r}}d{\omega _2} \frac{V_{{\varepsilon _1}, {\varepsilon _2}}^{j,k} ({\omega _1}, {\omega _2})}{{\omega _2} - {\omega _1}} h_{j,k}({\omega _1},{\omega _2}). \end{aligned}$$
(A1)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bain, E. A numerical study of two-point correlation functions of the two-periodic weighted Aztec diamond in mesoscopic limit. Lett Math Phys 113, 103 (2023). https://doi.org/10.1007/s11005-023-01723-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-023-01723-6

Keywords

Mathematics Subject Classification

Navigation