Skip to main content
Log in

Summing free unitary Brownian motions with applications to quantum information

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Motivated by quantum information theory, we introduce a dynamical random density matrix built out of the sum of \(k \ge 2\) independent unitary Brownian motions. In the large size limit, its spectral distribution equals, up to a normalising factor, that of the free Jacobi process associated with a single self-adjoint projection with trace 1/k. Using free stochastic calculus, we extend this equality to the radial part of the free average of k free unitary Brownian motions and to the free Jacobi process associated with two self-adjoint projections with trace 1/k, provided the initial distributions coincide. In the single projection case, we derive a binomial-type expansion of the moments of the free Jacobi process which extends to any \(k \ge 3\) the one derived in Demni et al. (Indiana Univ Math J 61:1351–1368, 2012) in the special case \(k=2\). Doing so give rise to a non normal (except for \(k=2\)) operator arising from the splitting of a self-adjoint projection into the convex sum of k unitary operators. This binomial expansion is then used to derive a pde satisfied by the moment generating function of this non normal operator and for which we determine the corresponding characteristic curves. As an application of our results, we compute the average purity and the entanglement entropy of the large-size limiting density matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We omit the dependence on k for sake of clarity.

  2. The state \(\tau \) is tracial and all the processes are continuous in the strong topology.

References

  1. Biane, P.: Free Brownian motion, free stochastic calculus and random matrices. In: Voiculescu D.V. (ed.) Free Probability Theory. Fields Institute Communications, vol. 12, pp. 1–19. American Mathematical Society, Providence (1997)

  2. Biane, P., Speicher, R.: Stochastic calculus with respect to free Brownian motion and analysis on Wigner space. Probab. Theory Relat. Fields 112(3), 373–409 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Belinschi, S.T., Sniady, P., Speicher, R.: Eigenvalues of non-Hermitian random matrices and Brown measure of non-normal operators: Hermitian reduction and linearization method. Linear Algebra Appl. 537, 48–83 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Collins, B., Dahlqvist, A., Kemp, T.: The spectral edge of unitary Brownian motion. Probab. Theory Relat. Fields 170(1–2), 49–93 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Collins, B., Nechita, I.: Random matrix techniques in quantum information theory. J. Math. Phys. 571(015215), 34 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Zyczkowski, K., Penson, K.A., Nechita, I., Collins, B.: Generating random density matrices. J. Math. Phys. 52(6), 062201 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Demni, N.: Free Jacobi process. J. Theor. Probab. 21, 118–143 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Demni, N.: Distributions of truncations of the heat kernel on the complex projective space. Ann. Math. Blaise Pascal 21(2), 1–20 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Demni, N., Guay-paquet, M., Nica, A.: Star-cumulants of the free unitary Brownian motion. Adv. Appl. Math. 69, 1–45 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Demni, N., Hamdi, T.: Support of the Brown measure of the product of a free unitary Brownian motion by a free self-adjoint projection. J. Funct. Anal. 282(6), 109362 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  11. Demni, N., Hamdi, T.: Relating moments of self-adjoint polynomials in two orthogonal projections. Available on arXiv

  12. Demni, N., Hamdi, T., Hmidi, T.: Spectral distribution of the free Jacobi process. Indiana Univ. Math. J. 61, 1351–1368 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Erdelyi, A., Magnus, W., Oberhettinger, F., Tricomi, F. G.: Higher Transcendental Functions. Vol. I, Based, in Part, on Notes Left by Harry Bateman, xxvi+302. McGraw-Hill Book Co., Inc., New York (1953)

  14. Hamdi, T.: Spectral distribution of the free Jacobi process, revisited. Anal. PDE 11(8), 2137–2148 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hamdi, T.: Liberation, free mutual information and orbital free entropy. Nagoya Math. J. 239, 1–27 (2018)

    MathSciNet  Google Scholar 

  16. Hamdi, T.: Free mutual information for two projections. Complex Anal. Oper. Theory 12(7), 1697–1705 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  17. Haagerup, U., Larsen, F.: Brown’s spectral distribution measure for R-diagonal elements in finite von Neumann algebras. J. Funct. Anal. 176(2), 331–367 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hiai, F., Petz, D.: The Semicircle Law, Free Random Variables, and Entropy. American Mathematical Society, Providence (2000)

    MATH  Google Scholar 

  19. Horzum, T., Kocer, E.G.: On some properties of Horadam polynomials. Int. Math. Forum. 4(25–28), 1243–1252 (2009)

    MathSciNet  MATH  Google Scholar 

  20. Izumi, M., Ueda, Y.: Remarks on free mutual information and orbital free entropy. Nagoya Math. J. 220, 45–66 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jarosz, A.: Summing free unitary random matrices. Phys. Rev. E 84, 011146 (2011)

    Article  ADS  Google Scholar 

  22. Kukulski, R., Nechita, I., Pawela, L., Puchala, Z., Zyczkowski, K.: Generating random quantum channels. J. Math. Phys. 62(6), 062201 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Lévy, T.: Schur-Weyl duality and the heat kernel measure on the unitary group. Adv. Math. 218(2), 537–575 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liao, M.: Lévy processes in Lie groups. In: Cambridge Tracts in Mathematics, vol. 162, x+266. Cambridge University Press, Cambridge (2004)

  25. Manocha, H.L., Srivastava, H.M.: A treatise on generating functions. In: Ellis Horwood Series: Mathematics and its Applications (1984)

  26. Mingo, J. A., Speicher, R.: FreMingo, J. A., Speicher, R.: Free probability and random matrices. Fields Institute Monographs, 35. Springer, New York; Fields Institute for Research in Mathematical Sciences, Toronto, ON, (2017)

  27. Nechita, I., Pellegrini, C.: Random pure quantum states via unitary Brownian motion. Electron. Commun. Probab. 18(27), 13 (2013)

    MathSciNet  MATH  Google Scholar 

  28. Nica, A., Speicher, R.: On the multiplication of free N -tuples of noncommutative random variables. Am. J. Math. 118(4), 799–837 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nica, A., Speicher, R.: Lectures on the Combinatorics of Free Probability. London Mathematical Society Lecture Note Series, vol. 335 (2006)

  30. Verdú, S.: Fifty years of Shannon theory. IEEE Trans. Inf. Theo. 44(6), 2057–2078 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education, Saudi Arabia for funding this research work through the project number (QU-IF-2-4-1-26574). The authors also thank to Qassim University for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek Hamdi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Moments of stationary distribution

In this appendix, we derive another expression of

$$\begin{aligned} m_n(\infty ) = \int x^n \tilde{\mu }_{\infty }^k(dx) = \frac{1}{2\pi } \int x^{n-1/2}\frac{\sqrt{4(k-1) - k^2x}}{(1 -x)}\textbf{1}_{[0,4(k-1)/k^2]}(x) dx. \end{aligned}$$

To the best of our best knowledge, formula (34) below never appeared in literature. Compared to (21), it has the merit to separate the case \(k=2\) corresponding to the arcsine distribution from other values \(k \ge 3\). Our main ingredients are two properties satisfied by the Gauss hypergeometric function.

To proceed, perform the variable change \(x = 4(k-1)y/k^2\) to write:

$$\begin{aligned} m_n(\infty )&= \frac{4^{n+1}(k-1)^{n+1}}{2\pi k^{2n+1}}\int y^{n-1/2}\frac{\sqrt{1-y}}{1 - 4(k-1)y/k^2} \textbf{1}_{[0,1]}(y) dy \\ {}&= \frac{4^{n}(k-1)^{n+1}}{\sqrt{\pi } k^{2n+1}}\frac{\Gamma (n+1/2)}{\Gamma (n+2)} {}_2F_1\left( 1, n+\frac{1}{2}, n+2; \frac{4(k-1)}{k^2}\right) \\ {}&= \frac{4^{n}(k-1)^{n+1}}{n!k^{2n+1}}\left\{ (-1)^n\sqrt{1-z}\frac{d^n}{dz^n} \left[ (1-z)^{n-1/2}{}_2F_1\left( \frac{1}{2},1,2; z\right) \right] \right\} _{z = 4(k-1)/k^2} \\ {}&= 2\frac{4^{n}(k-1)^{n+1}}{n!k^{2n+1}}\left\{ \sqrt{1-z}(-1)^n\frac{d^n}{dz^n} \left[ \frac{(1-z)^{n-1/2}}{1+\sqrt{1-z}}\right] \right\} _{z = 4(k-1)/k^2} \\ {}&= 2\frac{4^{n}(k-1)^{n+1}}{n!k^{2n+1}}\left\{ \sqrt{z}\frac{d^n}{dz^n} \left[ \frac{z^{n-1/2}}{1+\sqrt{z}}\right] \right\} _{z = [(k-2)/k]^2} \\ {}&= 2\frac{4^{n}(k-1)^{n+1}}{n!k^{2n+1}}\left\{ \sqrt{z}\frac{d^n}{dz^n} \left[ z^{n-1/2} - \frac{z^n}{1+\sqrt{z}} \right] \right\} _{z = [(k-2)/k]^2} \\ {}&= \frac{2(k-1)^{n+1}}{k^{2n+1}}\left\{ \left( {\begin{array}{c}2n\\ n\end{array}}\right) -\frac{4^{n}}{n!}\sqrt{z}\frac{d^n}{dz^n}\left[ \frac{z^n}{1+\sqrt{z}} \right] \right\} _{z = [(k-2)/k]^2}. \end{aligned}$$

Here, the second equality follows from the Euler integral representation of the Gauss hypergeometric function, the third and fourth ones follow from the variational formula (25), p.102 and formula (6), p.101 in [13]. Using direct computations, we readily see that

$$\begin{aligned} \frac{d^n}{dz^n}\left[ \frac{z^n}{1+\sqrt{z}} \right] = \frac{\mathscr {P}_n(\sqrt{z})}{2^n(1+\sqrt{z})^{n+1}} \end{aligned}$$

for some polynomial of degree n. For instance

$$\begin{aligned} \mathscr {P}_0(x)= & {} 1, \mathscr {P}_1(x) = x+2, \mathscr {P}_2(x) = 3x^2+9x+8, \\ \mathscr {P}_3(x)= & {} 15x^3+60x^2+87x+48. \end{aligned}$$

Consequently,

$$\begin{aligned} m_n(\infty ) = \frac{2(k-1)^{n+1}}{k^{2n+1}}\left\{ \left( {\begin{array}{c}2n\\ n\end{array}}\right) -\frac{(k-2)}{2n!(k-1)^{n+1}}k^n\mathscr {P}_n\left( \frac{k-2}{k}\right) \right\} , \end{aligned}$$
(34)

which reduces for \(k=2\) to the known formula:

$$\begin{aligned} m_n(\infty ) = \frac{(2n)!}{2^{2n}(n!)^2}. \end{aligned}$$

Appendix B. Free cumulants of an orthogonal projection

The first part of the proof of (29) is a routine computation in free probability theory and we refer the reader to [18] for further details on this machinery. Start with the Cauchy transform of P:

$$\begin{aligned} \tau [(z-P)^{-1}] = \frac{\alpha }{z-1} + \frac{1-\alpha }{z} = \frac{z + \alpha -1}{z(z-1)}, \quad z \notin \{0,1\}. \end{aligned}$$

Next, consider the equation

$$\begin{aligned} yz^2 -z(y+1) + 1-\alpha = 0, \end{aligned}$$

for y lying in a neighborhood of zero. Then the K-transform of P reads:

$$\begin{aligned} K(y) = \frac{y+1 + \sqrt{y^2+1 -2y(1-2\alpha )}}{2y}, \end{aligned}$$

and in turn, its R-transform is given by

$$\begin{aligned} R(y) = K(y) -\frac{1}{y} = \frac{1}{2}\left[ 1 + \frac{\sqrt{y^2+1 -2y(1-2\alpha )}-1}{y}\right] . \end{aligned}$$

It remains to write down the Taylor expansion of the function:

$$\begin{aligned} f_{\alpha }: y \mapsto \frac{\sqrt{y^2+1 -2y(1-2\alpha )}-1}{y}. \end{aligned}$$

To this end, we appeal to the generating series of Legendre polynomials:

$$\begin{aligned} \sum _{n=0}^{\infty } P_n(x)y^n = \frac{1}{\sqrt{1+y^2-2xy}}, \quad |y| < 1. \end{aligned}$$

Indeed, setting \(\beta := 1-2\alpha \in [-1,1]\), one has

$$\begin{aligned}{}[yf_{\alpha }(y)]' = (y - \beta ) \sum _{n\ge 0} P_n(\beta ) y^n \end{aligned}$$

so that

$$\begin{aligned} f_{\alpha }(y)&= \sum _{n \ge 1}\frac{y^{n}}{n+1} [P_{n-1}(\beta ) - \beta P_n(\beta )] - \beta \\ {}&= \sum _{n \ge 1}\frac{y^{n}}{2n+1} \left[ P_{n-1}(\beta ) - P_{n+1}(\beta )\right] - \beta \end{aligned}$$

where the last equality follows from the recurrence relation:

$$\begin{aligned} (2n+1)xP_n(x) = (n+1)P_{n+1}(x) + nP_{n-1}(x). \end{aligned}$$

Extracting the Taylor coefficients of \(f_{\alpha }\) and recalling the definition

$$\begin{aligned} R(y) =\sum _{n \ge 0}\kappa _{n+1}(P)y^n \end{aligned}$$

we get (29).

Note that since Legendre polynomials are orthogonal with respect to the uniform distribution in \([-1,1]\), they are parity preserving. In particular,

$$\begin{aligned} P_{2n+1}(0) = 0, \quad P_{2n}(0) = (-1)^n\frac{(1/2)_n}{n!}, \end{aligned}$$

so that one recovers (28) after some computations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamdi, T., Demni, N. Summing free unitary Brownian motions with applications to quantum information. Lett Math Phys 113, 80 (2023). https://doi.org/10.1007/s11005-023-01702-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-023-01702-x

Keywords

Navigation