Skip to main content
Log in

3D TQFT and HOMFLYPT homology

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We describe a family of 3d topological B-models whose target spaces are Hilbert schemes of points in \(\mathbb {C}^2\). The interfaces separating theories with different numbers of points correspond to braid strands. The Hilbert space of the picture of a closed braid is the HOMFLY-PT homology of the corresponding link.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. In the original paper we worked with the affine version of this category of matrix factorizations.

  2. On the picture the red circle is \(S^1\) and the black lines are the defect curve \(C\).

  3. The elements of \(\mathfrak {Br}_n\) are related to the braid graphs by the MOY relations [27].

References

  1. Arkhipov, S., Kanstrup, T.: Equivariant matrix factorizations and Hamiltonian reduction. Bull. Korean Math. Soc. 54(5), 1803–1825 (2015). arXiv:1510.07472v1

    MathSciNet  MATH  Google Scholar 

  2. Anno, R., Nandakumar, V.: Exotic t-structures for two-block Springer fibers (2016). arXiv:1602.00768v1

  3. Asaeda, M., Przytycki, J., Sikora, A.: Categorification of the Kauffman bracket skein module of I-bundles over surfaces. Algebra Geom. Topol. 4(2), 1177–1210 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arnold, V.: Mathematical Methods of Classical Mechanics. Springer, New York (1989)

    Book  Google Scholar 

  5. Baez, J., Neuchl, M.: Higher dimensional algebra. Adv. Math. 121(2), 196–244 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Caldararu, A., Willerton, S.: The Mukai pairing, I: a categorical approach (2007). arXiv:0707.2052v1

  7. Dimofte, T., Garner, N., Hilburn, J., Oblomkov, A., Rozansky, L.: (in preparation) (2023)

  8. Dunfield, N., Gukov, S., Rasmussen, J.: The superpolynomial for knot homologies. Exp. Math. 15(2), 129–159 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V.: Tensor categories. Mathematical Surveys and Monographs (2015)

  10. Garner, R., Gurksi, N.: The low-dimensional structures formed by tricategories. Math. Proc. Camb. Philos. Soc. 146(03), 551 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gaitsgory, D., Rozenblyum, N.: A study in derived algebraic geometry. Mathematical Surveys and Monographs (2017)

  12. Gaiotto, D., Witten, E.: Supersymmetric boundary conditions in \(\cal{N} =4\) super yang-mills theory. J. Stat. Phys. 135(5–6), 789–855 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Nakajima, H.: Instantons on ALE spaces, quiver varieties, and Kac–Moody algebras. Duke Math. J. 76(2), 365–416 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hiraku, N.: Introduction to quiver varieties-for ring and representation theorists. In: Proceedings of the 49th Symposium on Ring Theory and Representation Theory (2017)

  15. Hanany, A., Witten, E.: Type IIB superstrings, BPS monopoles, and three-dimensional gauge dynamics. Nucl. Phys. B 492(1–2), 152–190 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Hanany, Amihay, Witten, Edward: Type IIB superstrings, BPS monopoles, and three-dimensional gauge dynamics. Nucl. Phys. B 492(1–2), 152–190 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Jones, V.F.R.: Hecke algebra representations of braid groups and link polynomials. Ann. Math. 126(2), 335–392 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  18. Khovanov, M.: Triply-graded link homology and Hochschild homology of Soergel bimodules. Int. J. Math. 18(08), 869–885 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Knorrer, H.: Cohen–Macaulay modules on hypersurface singularities. I. Invent. Math. 1, 153–164 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Khovanov, M., Rozansky, L.: Matrix factorizations and link homology. II. Geom. Topol. 12, 1387–1425 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kapustin, A., Rozansky, L.: Three-dimensional topological field theory and symplectic algebraic geometry II. Commun. Number Theory Phys. 4(3), 463–549 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kapustin, A., Rozansky, L., Saulina, N.: Three-dimensional topological field theory and symplectic algebraic geometry I. Nucl. Phys. B 816(3), 295–355 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Kapranov, M.M., Voevodsky, V.A.: 2-categories and Zamolodchikov tetrahedra equations. In: Algebraic Groups and Their Generalizations: Quantum and Infinite-Dimensional Methods, pp. 177–259 (1994)

  24. Kapustin, A., Witten, E.: Electric-magnetic duality and the geometric Langlands program. Commun. Number Theory Phys. 1(1), 1–236 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lurie, J.: On the classification of topological field theories. Curr. Dev. Math. 2008(1), 129–280 (2008)

    Article  MATH  Google Scholar 

  26. Maffei, A.: Quiver varieties of type A. Comment. Math. Helv. 80, 1–27 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Murakami, H., Ohtsuki, T., Yamada, Sh.: HOMFLY polynomial via an invariant of colored plane graphs. Enseign. Math. 44(2), 325–360 (1998)

    MathSciNet  MATH  Google Scholar 

  28. Mirković, Ivan, Vybornov, Maxim: On quiver varieties and affine Grassmannians of type A. Comptes Rendus Math. 336(3), 207–212 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mirković, Ivan, Vybornov, Maxim, Krylov, Vasily: Comparison of quiver varieties, loop Grassmannians and nilpotent cones in type A. Adv. Math. 407, 108397 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nakajima, H.: Lectures on Hilbert Schemes of Points on Surfaces. University Lecture Series (1999)

  31. Nakajima, H.: Geometric Satake correspondence for affine Kac–Moody Lie algebras of type A (2018). arXiv:1812.11710v1

  32. Nakajima, H., Takayama, Y.: Cherkis bow varieties and coulomb branches of quiver gauge theories of affine type A. Sel. Math. New Ser. 23(4), 2553–2633 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Oblomkov, A., Rozansky, L.: HOMFLYPT homology of Coxeter links (2017). arXiv:1706.00124v1

  34. Oblomkov, A., Rozansky, L.: 3D TQFT and HOMFLYPT homology (2018) arXiv:1812.06340

  35. Oblomkov, A., Rozansky, L.: A categorification of a cyclotomic Hecke algebra (2018). arXiv:1801.06201v1

  36. Oblomkov, A., Rozansky, L.: Affine braid group, JM elements and knot homology. Transformation Groups (2018)

  37. Oblomkov, A., Rozansky, L.: Categorical Chern character and braid groups (2018). arXiv:1811.03257v1

  38. Oblomkov, A., Rozansky, L.: Knot homology and sheaves on the Hilbert scheme of points on the plane. Sel. Math. New Ser. 24(3), 2351–2454 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  39. Oblomkov, A., Rozasky, L.: Categorical Chern character and Hall algebras (in preparation) (2019)

  40. Oblomkov, A., Rozansky, L.: Soergel bimodules and matrix factorizations (2020). arXiv:2010.14546v1

  41. Oblomkov, A., Rozansky, L.: Matrix factorizations and annular homology (in preparation) (2022)

  42. Rimanyi, R., Rozansky, L.: New quiver-like varieties and Lie superalgebras (2021). arXiv:2105.11499v1

  43. Soergel, W.: Langlands’ philosophy and Koszul duality. In: Algebra-Representation Theory (Constanta, 2000), pp. 379–414 (2001)

Download references

Acknowledgements

We would like to thank Dmitry Arinkin, Tudor Dimofte, Eugene Gorsky, Sergey Gukov, Tina Kanstrup, Ivan Losev, Roman Bezrukavnikov and Andrei Neguţ for useful discussions. The authors also extremely grateful to an anonymous referee for many corrections and important suggestion on the structure of the paper. The work of A.O. was supported in part by the NSF CAREER Grant DMS-1352398, NSF FRG Grant DMS-1760373 and Simons Fellowship. The work of L.R. was supported in part by the NSF Grant DMS-1760578. Funding was provided by Simons Foundation (Grant No. 561855), Division of Mathematical Sciences (Grant No. 1108727).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Oblomkov.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oblomkov, A., Rozansky, L. 3D TQFT and HOMFLYPT homology. Lett Math Phys 113, 71 (2023). https://doi.org/10.1007/s11005-023-01684-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-023-01684-w

Keywords

Mathematics Subject Classification

Navigation