Skip to main content
Log in

Why do (weak) Meyer sets diffract?

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Given a weak model set in a locally compact Abelian group, we construct a relatively dense set of common Bragg peaks for all its subsets that have non-trivial Bragg spectrum. Next, we construct a relatively dense set of common norm almost periods for the diffraction, pure point, absolutely continuous and singular continuous spectrum, respectively, of all its subsets. We use the Fibonacci model set to illustrate these phenomena. We extend all these results to arbitrary translation bounded weighted Dirac combs supported within some Meyer set. We complete the paper by discussing extensions of the existence of the generalized Eberlein decomposition for measures supported within some Meyer set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Argabright, L.N., Gil de Lamadrid, J.: Fourier analysis of unbounded measures on locally compact abelian groups. Memoirs Am. Math. Soc. 145, 53 (1974)

  2. Baake, M.: Diffraction of weighted lattice subsets. Can. Math. Bull. 45, 483–498 (2002). arXiv:1511.00885

  3. Baake, M., Gähler, F., Pair correlations of aperiodic inflation rules via renormalisation: Some interesting examples. Topol. Appl. 205, 4–27 (2016). arXiv:1511.00885

  4. Baake, M., Grimm, U.: Aperiodic Order. Vol. 1: A Mathematical Invitation. Cambridge University Press, Cambridge (2013)

  5. Baake, M., Grimm, U. (eds.): Aperiodic Order. Vol. 2: Crystallography and Almost Periodicity, Cambridge University Press, Cambridge (2017)

  6. Baake, M., Grimm, U.: Squirals and beyond: substitution tilings with singular continuous spectrum. Ergodic Theory Dyn. Syst. 34, 1077–1102 (2014). arXiv:1205.1384

    Article  MathSciNet  MATH  Google Scholar 

  7. Baake, M., Grimm, U.: Fourier transform of Rauzy fractals and point spectrum of 1D Pisot inflation tilings. Documenta Mathematica 25, 2303–2337 (2020). arXiv:1907.11012

  8. Baake, M., Huck, C., Strungaru, N.: On weak model sets of extremal density. Indag. Math. 28, 3–31 (2017). arXiv:1512.07129v2

  9. Baake, M., Lenz, D.: Dynamical systems on translation bounded measures: Pure point dynamical and diffraction spectra. Ergodic Theory Dyn. Syst. 24, 1867–1893 (2004). arXiv:math.DS/0302231

  10. Baake, M., Lenz, D., Moody, R.V.: A characterisation of model sets via dynamical systems. Ergodic Theory Dyn. Syst. 27, 341–382 (2007). arXiv:math.DS/0511648

  11. Baake, M., Moody, R.V.: Weighted Dirac combs with pure point diffraction. J. Reine Angew. Math. (Crelle) 573, 61–94 (2004). arXiv:math.MG/0203030

  12. Berg, C., Forst, G.: Potential Theory on Locally Compact Abelian Groups. Springer, Berlin (1975)

    Book  MATH  Google Scholar 

  13. Blech, I., Cahn, J. W., Gratias, D.: Reminiscences about a Chemistry Nobel Prize won with metallurgy: Comments on D. Shechtman and I. A. Blech; Metall. Trans. A, 1985, vol. 16A, pp. 1005–12, Metall. Mater. Trans. A 43, 3411–3422 (2012)

  14. Dworkin, S.: Spectral theory and \(X\)-ray diffraction. J. Math. Phys. 34, 2965–2967 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. El Abdalaoui, E.H., Lemańczyk, M., de la Rue, T.: A dynamical point of view on the set of \( {\cal{B} }\)-free integers. Int. Math. Res. Not. 2015(16), 7258–7286 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gratias, D., Quiquandon, M.: Discovery of quasicrystals: the early days. Comptes Rendus Physique 20, 803–816 (2019)

    Article  ADS  Google Scholar 

  17. Gil de Lamadrid, J., Argabright, L.N.: Almost periodic measures. Memoirs Am. Math. Soc. 85, 428 (1990)

  18. Hof, A.: Uniform distribution and the projection method. In: Patera, J. (ed.) Quasicrystals and Discrete Geometry. Fields Institute Monographs, vol. 10, pp. 201–206. AMS, Providence (1988)

  19. Hof, A.: On diffraction by aperiodic structures. Commun. Math. Phys. 169, 25–43 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. International Union of Crystallography: Report of the executive committee for 1991. Acta Cryst. A48, 922–946 (1992)

  21. Kasjan, S., Keller, G., Lemańczyk, M.: Dynamics of \({\cal{B} }\)-free sets: a wiew through the window. Int. Math. Res. Not. 2019(9), 2690–2734 (2019)

    Article  MATH  Google Scholar 

  22. Keller, G.: Irregular \({\cal{B} }\)-free Toeplitz sequences via Besicovitch’s construction of sets of multiples without density. Monatsh Math. 199, 801–816 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  23. Keller, G., Lemańczyk, M., Richard, C., Sell, D.: On the Garden of Eden theorem for \(\cal{B} \)-free subshifts. Isr. J. Math. 251, 567–594 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  24. Keller, G., Richard, C.: Dynamics on the graph of the torus parametrisation. Ergodic Theory Dyn. Syst. 28, 1048–1085 (2018)

    Article  MATH  Google Scholar 

  25. Keller, G., Richard, C.: Periods and factors of weak model sets. Isr. J. Math. 229, 85–132 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Keller, G., Richard, C., Strungaru N.: Spectrum of weak model sets with Borel windows. Can. Math. Bull. (preprint, to appear)(2022). arXiv:2107.08951

  27. Klick, A., Strungaru, N., Tcaciuc A.: On arithmetic progressions in model sets. Discrete Comput. Geom. 67, 930–946 (2022). arXiv:2003.13860

  28. Lagarias, J.: Meyer’s concept of quasicrystal and quasiregular sets. Commun. Math. Phys. 179, 365–376 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Lagarias, J.: Mathematical quasicrystals and the problem of diffraction. In: Baake, M., Moody, R.V. (eds.) Directions in Mathematical Quasicrystals. CRM Monograph Series, vol. 13, pp. 61–93. AMS, Providence (2000)

  30. Last, Y.: Quantum dynamics and decompositions of singular continuous spectra. J. Funct. Anal. 142, 406–445 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lenz, D., Richard, C.: Pure point diffraction and cut and project schemes for measures: the smooth case. Math. Z. 256, 347–378 (2007). arXiv:math.DS/0603453

  32. Lenz, D., Spindeler, T., Strungaru, N.: Pure point diffraction and mean, Besicovitch and Weyl almost periodicity. Preprint (2020). arXiv:2006.10821

  33. Lenz, D., Spindeler, T., Strungaru, N.: Pure point spectrum for dynamical systems and mean, Besicovitch and Weyl almost periodicity. Ergodic Theor. Dyn. Syst. (2023). https://doi.org/10.1017/etds.2023.14.arXiv:2006.10825

  34. Lenz, D., Strungaru, N.: Pure point spectrum for measurable dynamical systems on locally compact Abelian groups. J. Math. Pures Appl. 92, 323–341 (2009). arXiv:0704.2498

    Article  MathSciNet  MATH  Google Scholar 

  35. Meyer, Y.: Algebraic Numbers and Harmonic Analysis. North-Holland, Amsterdam (1972)

    MATH  Google Scholar 

  36. Meyer, Y.: Quasicrystals, almost periodic patterns, mean-periodic functions and irregular sampling. Afr. Diaspora J. Math. 13, 7–45 (2012)

    MathSciNet  MATH  Google Scholar 

  37. Moody, R.V.: Meyer sets and their duals. In: Moody, R.V. (eds.) The Mathematics of Long-Range Aperiodic Order, NATO ASI Series , vol. C489, pp. 403–441. Kluwer, Dordrecht (1997)

  38. Moody, R.V.: Model sets: a survey. In: Axel, F., Dénoyer, F., Gazeau, J. P. (eds.) From Quasicrystals to More Complex Systems. EDP Sciences, Les Ulis, and Springer, Berlin, pp. 145–166 (2000). arXiv:math.MG/0002020

  39. Moody, R. V., Strungaru, N.: Almost periodic measures and their Fourier transforms. In: [5], pp. 173–270 (2017)

  40. Pedersen, G.: Analysis Now, Graduate Texts in Mathematics. Springer, New York (1989)

  41. Reiter, H., Stegeman, J.D.: Classical Harmonic Analysis and Locally Compact Groups. Clarendon Press, Oxford (2000)

    MATH  Google Scholar 

  42. Richard, C., Strungaru, N.: Pure point diffraction and Poisson summation. Ann. H. Poincaré 18, 3903–3931 (2017). arXiv:1512.00912

  43. Richard, C., Strungaru, N.: A short guide to pure point diffraction in cut-and-project sets. J. Phys. A Math. Theor. 50(15) (2017). arXiv:1606.08831

  44. Rudin, W.: Fourier Analysis on Groups. Wiley, New York (1962)

    MATH  Google Scholar 

  45. Schlottmann, M.: Generalized model sets and dynamical systems. In: Baake, M., Moody, R.V. (eds.) Directions in Mathematical Quasicrystals, CRM Monogr. Ser., pp. 143–159. AMS, Providence (2000)

  46. Shechtman, D., Blech, I., Gratias, D., Cahn, J.W.: Metallic phase with long-range orientational order and no translation symmetry. Phys. Rev. Lett. 53, 183–185 (1984)

    Article  Google Scholar 

  47. Sing, B.: Pisot Substitutions and Beyond. Ph.D. thesis (Univ. Bielefeld) (2006)

  48. Strungaru, N.: Almost periodic measures and long-range order in Meyer sets. Discrete Comput. Geom. 33, 483–505 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  49. Strungaru, N.: On the Bragg diffraction spectra of a Meyer Set. Can. J. Math. 65, 675–701 (2013). arXiv:1003.3019

    Article  MathSciNet  MATH  Google Scholar 

  50. Strungaru, N.: On weighted Dirac combs supported inside model sets. J. Phys. A Math. Theor. 47 (2014). arXiv:1309.7947

  51. Strungaru, N.: Almost periodic pure point measures. In: [5], pp. 271–342 (2017). arXiv:1501.00945

  52. Strungaru, N.: On the Fourier analysis of measures with Meyer set support. J. Funct. Anal. 278, 30 (2020). arXiv:1807.03815

  53. Strungaru, N.: Why do Meyer sets diffract?, Extended arxiv version (2021). arXiv:2101.10513

Download references

Acknowledgements

The work was supported by NSERC with grant 2020-00038, and we are greatly thankful for all the support. The generalization to FCDM functions, and its application were suggested by Daniel Lenz, and we are grateful for his insightful feedback. We would like to thank Anna Klick for creating Fig. 1 in Maple, and for some suggestions which improved the quality of the manuscript. We would like to thank Michael Baake for many helpful suggestions, and Adam Humeniuk for carefully reading the manuscript and for many suggestions which helped improve the paper. Finally, we would like to thank the two anonymous referees for numerous suggestions which improved the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolae Strungaru.

Additional information

We dedicate this work to Daniel Lenz on the occasion of his 50th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strungaru, N. Why do (weak) Meyer sets diffract?. Lett Math Phys 113, 52 (2023). https://doi.org/10.1007/s11005-023-01676-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-023-01676-w

Keywords

Mathematics Subject Classification

Navigation