Skip to main content
Log in

Recurrence times, waiting times and universal entropy production estimators

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

The universal typical-signal estimators of entropy and cross-entropy based on the asymptotics of recurrence and waiting times play an important role in information theory. Building on their construction, we introduce and study universal typical-signal estimators of entropy production in the context of nonequilibrium statistical mechanics of one-sided shifts over finite alphabets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability statement

The datasets analyzed during the current study are publicly available in the Genome Reference Consortium Human Build 38 repository, Patch Release 14 [24].

Notes

  1. Some remarks are in order to ease comparisons with the setup of Bradley [6, 7]. First, note that the coefficients do not change if we replace [a] with [A], \(A \subseteq {\mathcal {A}}^n\) and [b] with [B], \(B \subseteq {\mathcal {A}}^m\): For example, if \({\mathbb {P}}([a] \cap \sigma ^{-n-\ell }[b]) \le \psi _{{\mathbb {P}}}^*(\ell ){\mathbb {P}}([a]){\mathbb {P}}([b])\) for all a and b, then summing over \(a \in A\) and \(b\in B\) gives \({\mathbb {P}}([A] \cap \sigma ^{-n-\ell }([B])) \le \psi _{{\mathbb {P}}}^*(\ell ){\mathbb {P}}([A]){\mathbb {P}}([B])\). Second, because m is arbitrary, we have a generating semi-algebra at hand and a standard approximation argument shows that we can replace the requirement that \(B \subseteq {\mathcal {A}}^m\) for some \(m \in \mathbb {N}\) with the requirement that B be Borel measurable. Finally, since we are only interested in \(\sigma \)-invariant measures on \({\mathcal {A}}^\mathbb {N}\)—which are naturally in one-to-one correspondence with \(\sigma \)-invariant measures on \({\mathcal {A}}^\mathbb {Z}\)—the definitions then translate to Bradley’s definitions on \({\mathcal {A}}^\mathbb {Z}\) exploiting \(\sigma \)-invariance and yet another approximation procedure by sets now in the semi-algebra built by shifting by n cylinders naturally associated with sets of the form \(A \subseteq {\mathcal {A}}^n\) for some n.

  2. The original result, Theorem 1 in [6], requires the measure \({\mathbb {P}}\) to be mixing in the sense of ergodic theory. However, later in the same paper it is remarked that this extra assumption is superfluous to derive that \(\psi '(\ell ') > 0\) for some \(\ell '\) implies \(\psi '(\ell ) \rightarrow 1\) as \(\ell \rightarrow \infty \). As noted by Bradley in his later review [7, §4.1], the fact that \(\psi '(\ell ) \rightarrow 0\) in turn implies \(\phi \)-mixing—and thus mixing in the sense of ergodic theory—can be combined with the original result to obtain the variant of the result stated here. According to Bradley in this same review, this version of the result was included in later works at the suggestion of Denker. It is also worth noting that the proof of (any version of) the result relies heavily on the earlier work [5] on \(\phi \)-mixing.

  3. Unlike in the Markov case, this is not a necessary requirement.

  4. The adjoint \(\Phi ^*\) is defined with respect to the inner product \(\langle A, B\rangle ={{\,\textrm{tr}\,}}(A^*B)\) on \({\mathcal {B}}({\mathcal {H}})\).

  5. In the Markov case, irreducibility is equivalent to the ergodicity of \({\mathbb {P}}\).

  6. On the set where \(\tfrac{1}{n} \log {\widehat{{\mathbb {P}}}}_n(x_1^n) \rightarrow -\infty \) as \(n\rightarrow \infty \), the inequality \(\limsup \tfrac{1}{n}\log {\widehat{R}}_n(x) \le h_{{\widehat{{\mathbb {P}}}}}(x)\) is vacuously true (recall Hypothesis i”).

References

  1. Abadi, M.: Sharp error terms and necessary conditions for exponential hitting times in mixing processes. Ann. Probab. 32, 243–264 (2004)

    MathSciNet  MATH  Google Scholar 

  2. Abadi, M., Chazottes, J.-R., Redig, F., Verbitskiy, E.: Exponential distribution for the occurrence of rare patterns in Gibbsian random fields. Commun. Math. Phys. 246, 269–294 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Abadi, M., Vergne, N.: Sharp error terms for return time statistics under mixing conditions. J. Theor. Probab. 22, 18–37 (2009)

    MathSciNet  MATH  Google Scholar 

  4. Cristadoro, G., Degli Esposti, M., Altmann, E.G.: The common origin of symmetry and structure in genetic sequences. Sci. Rep. 8, 15817 (2018)

    ADS  Google Scholar 

  5. Bradley, R.C.: On the \(\phi \)-mixing condition for stationary random sequences. Duke Math. J. 47, 421–433 (1980)

    MathSciNet  MATH  Google Scholar 

  6. Bradley, R.C.: On the \(\psi \)-mixing condition for stationary random sequences. Trans. Am. Math. Soc. 276, 55–66 (1983)

    MathSciNet  MATH  Google Scholar 

  7. Bradley, R.C.: Basic properties of strong mixing conditions: a survey and some open questions. Probab. Surv. 2, 107–144 (2005)

    MathSciNet  MATH  Google Scholar 

  8. Benoist, T., Cuneo, N., Jakšić, V., Pillet, C.-A.: On entropy production of repeated quantum measurements II. Examples. J. Stat. Phys. 182(3), 1–71 (2021)

    ADS  MathSciNet  MATH  Google Scholar 

  9. Benoist, T., Jakšić, V., Pautrat, Y., Pillet, C.-A.: On entropy production of repeated quantum measurements I. General theory. Commun. Math. Phys. 357, 77–123 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  10. Bryc, W., Dembo, A.: Large deviations and strong mixing. Ann. Inst. Henri Poincaré 32, 549–569 (1996)

    MathSciNet  MATH  Google Scholar 

  11. Climenhaga, V.: The thermodynamic approach to multifractal analysis. Ergod. Theory Dyn. Syst. 34, 1409–1450 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Cristadoro, G., Degli Esposti, M., Jakšić, V., Raquépas, R.: On a waiting-time result of Kontoyiannis: mixing or decoupling? (2022) Preprint, arXiv:2209.09717

  13. Cuneo, N., Jakšić, V., Pillet, C.-A., Shirikyan, A.: Fluctuation theorem and thermodynamic formalism. (2017) Unpublished report, arXiv:1712.05167

  14. Cuneo, N., Jakšić, V., Pillet, C.-A., Shirikyan, A.: Large deviations and fluctuation theorem for selectively decoupled measures on shift spaces. Rev. Math. Phys. 31, 1950036-1–54 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Chazottes, J.-R., Olivier, E.: Relative entropy, dimensions and large deviations for g-measures. J. Phys. A Math. Gen. 33, 675–689 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  16. Chazottes, J.-R., Redig, F.: Testing the irreversibility of a Gibbsian process via hitting and return times. Nonlinearity 18, 2477–2489 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  17. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, 2nd edn. Springer, Berlin (1998)

    MATH  Google Scholar 

  18. Evans, D.J., Cohen, E.G.D., Morriss, G.P.: Probability of second law violation in shearing steady flows. Phys. Rev. Lett. 71, 2401–2404 (1993)

    ADS  MATH  Google Scholar 

  19. van Enter, A.C.D., Fernández, R., Sokal, A.D.: Regularity properties and pathologies of position-space renormalization-group transformations. J. Stat. Phys. 72, 879–1167 (1993)

    ADS  MATH  Google Scholar 

  20. Gallavotti, G., Cohen, E.G.D.: Dynamical ensembles in nonequilibrium statistical mechanics. Phys. Rev. Lett. 74, 2694–2697 (1995)

    ADS  Google Scholar 

  21. Gallavotti, G., Cohen, E.G.D.: Dynamical ensembles in stationary states. J. Stat. Phys. 80, 931–970 (1995)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Gao, Y., Kontoyiannis, I., Bienenstock, E.: Estimating the entropy of binary time series: methodology, some theory and a simulation study. Entropy 10, 71–99 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Georgii, H.O.: Gibbs Measures and Phase Transitions, 2nd edn. De Gruyter, Berlin (2011)

    MATH  Google Scholar 

  24. Genome Reference Consortium: Human Build 38, Patch Release 14, Available online at https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.40 as of December 2022, (2022)

  25. Jakšić, V.: Lectures on entropy I: information–theoretic notions. In: Bahns et al (Eds) Dynamical Methods in Open Quantum Systems, Tutorials, Schools and Workshops in the Mathematical Sciences, pp. 141–268, Springer (2019)

  26. Johansson, A., Öberg, A., Pollicott, M.: Ergodic theory of Kusuoka measures. J. Fractal Geom. 4(2), 185–214 (2017)

    MathSciNet  MATH  Google Scholar 

  27. Jakšić, V., Ogata, Y., Pillet, C.-A., Seiringer, R.: Hypothesis testing and non-equilibrium statistical mechanics. Rev. Math. Phys. 24(6), 1–67 (2012)

    MathSciNet  MATH  Google Scholar 

  28. Jakšić, V., Pillet, C.-A., Shirikyan, A.: Beyond Gibbsianity. In preparation

  29. Jakšić, V., Pillet, C.-A., Rey-Bellet, L.: Entropic fluctuations in statistical mechanics I. Classical dynamical systems. Nonlinearity 24, 699–763 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  30. Kontoyiannis, I.: Asymptotic recurrence and waiting times for stationary processes. J. Theor. Probab. 11, 795–811 (1998)

    MathSciNet  MATH  Google Scholar 

  31. Kontoyiannis, I.: Asymptotic recurrence and waiting times in stationary processes, and their application in data compression. Stanford PhD Thesis, (1998)

  32. Kusuoka, S.: Dirichlet forms on fractals and products of random matrices. Publ. Res. Inst. Math. Sci. 25, 659–680 (1989)

    MathSciNet  MATH  Google Scholar 

  33. Kontoyiannis, I., Algoet, P.H., Suhov, Y.M., Wyner, A.J.: Nonparametric entropy estimation for stationary processes and random fields, with applications to English text. IEEE Trans. Inf. Theory 44, 1319–1327 (1998)

    MathSciNet  MATH  Google Scholar 

  34. Lebowitz, J.L., Spohn, H.: A Gallavotti-Cohen-type symmetry in the large deviation functional for stochastic dynamics. J. Stat. Phys. 95, 333–365 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  35. Ziv, L., Lempel, A.: A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory 23, 327–343 (1977)

    MathSciNet  MATH  Google Scholar 

  36. Ziv, L., Lempel, A.: Compression of individual sequences via variable-rate coding. IEEE Trans. Inf. Theory 24, 530–536 (1978)

    MathSciNet  MATH  Google Scholar 

  37. Maes, C.: The fluctuation theorem as a Gibbs property. J. Stat. Phys. 95, 367–392 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  38. Orey, S., Pelikan, S.: Large deviation principles for stationary processes. Ann. Probab. 16, 1481–1495 (1988)

    MathSciNet  MATH  Google Scholar 

  39. Ornstein, D.S., Weiss, B.: Entropy and data compression schemes. IEEE Trans. Inf. Theory 39, 78–83 (1993)

    MathSciNet  MATH  Google Scholar 

  40. Pfister, Ch.-É.: Thermodynamical aspects of classical dynamical systems. Progr. Probab. 51, 393–472 (2002)

    MATH  Google Scholar 

  41. Raquépas, R.: A gapped generalization of Kingman’s subadditive ergodic theorem. (2022) Preprint, arXiv:2211.13134

  42. Ruelle, D.: Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics. J. Stat. Phys. 95, 393–468 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  43. Rudner, R., Karkas, J.D., Chargaff, E.: Separation of B. subtilis DNA into complementary strands II-III. Proc. Natl. Acad. Sci. USA 60, 915–922 (1968)

    ADS  Google Scholar 

  44. Salgado-García, R.: Time-irreversibility test for random-length time series: the matching-time approach applied to DNA. Chaos 31, 123126 (2021)

    ADS  MathSciNet  Google Scholar 

  45. Salgado-García, R., Moldano, C.: Estimating entropy rate from censored symbolic time series: a test for time-irreversibility. Chaos 31, 013131 (2021)

    ADS  MathSciNet  MATH  Google Scholar 

  46. Schneider, V.A., et al.: Evaluation of GRCh38 and de novo haploid genome assemblies demonstrates the enduring quality of the reference assembly. Genome Res. 21, 849–864 (2017)

    Google Scholar 

  47. Shields, P.C.: The ergodic theory of discrete sample paths. In: Graduate Studies in Mathematics. American Mathematical Society (1996)

  48. Verdú, S.: Empirical estimation of information measures: a literature guide. Entropy 21, 720–736 (2019)

    ADS  MathSciNet  Google Scholar 

  49. Walters, P.: Regularity conditions and Bernoulli properties of equilibrium states and g-measures. J. Lond. Math. Soc. 71, 379–396 (2005)

    MathSciNet  MATH  Google Scholar 

  50. Wyner, A.D., Ziv, J.: Some asymptotic properties of the entropy of a stationary ergodic data source with applications to data compression. IEEE Trans. Inf. Theory 35, 1250–1258 (1989)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Agence Nationale de la Recherche through the grant NONSTOPS (ANR-17-CE40-0006-01, ANR-17-CE40-0006-02, ANR-17-CE40-0006-03) and was partly developed during VJ’s and MDE’s stays at the CY Advanced Studies, whose support is gratefully acknowledged. Another part of this work was done during MDE’s stay at McGill University funded by Simons CRM Scholar-in-Residence Program. Additional funding was provided by the CY Initiative of Excellence (Investissements d’Avenir, grant ANR-16-IDEX-0008). GC acknowledges partial support by the PRIN Grant 2017S35EHN “Regular and stochastic behaviour in dynamical systems” of the Italian Ministry of University and Research (MUR) and by the UMI Group “DinAmicI.” VJ acknowledges the support of NSERC. Most of this work was done, while RR was a postdoctoral researcher at CY Cergy Paris Université and supported by the LabEx MME-DII (Investissements d’Avenir). Part of this work was also completed during RR’s stay at the Centre de recherches mathématiques of Université de Montréal, whose support is gratefully acknowledged. The authors wish to thank T. Benoist and N. Cuneo for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vojkan Jakšić.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

Proof of Theorem 6.1

One follows the steps of the proof of Theorem 3.4 in Sect. 5, with the following changes. In Step 1, the \({\mathbb {P}}\)-almost sure validity of (4) now relies on Hypothesis i and adaptations of Fekete’s lemma and Kingman’s theorem to the corresponding generalized subadditivity condition which are discussed in [41]. The set \(E_{n, \epsilon }\) is defined in the same way, but one takes

$$\begin{aligned} B_{n, \epsilon }:=\left\{ x:\, {{\widehat{R}}}_{n}(x)\le \text {e}^{-\log {{\widehat{{\mathbb {P}}}}}_{n-\tau _n}(x_1^n)-n\epsilon }\right\} . \end{aligned}$$

In Step 2, one starts with

$$\begin{aligned} {\mathbb {P}}( B_{n,\epsilon } ) = \sum _{a \in {{\,\textrm{supp}\,}}{\mathbb {P}}_n} \sum _{j=1}^{\lfloor \text {e}^{- \log {\widehat{{\mathbb {P}}}}_{n-\tau _n}(a_1^{n-\tau _n}) - n \epsilon }\rfloor }{\mathbb {P}}\left( \left\{ x : {\widehat{R}}_n(x) = j, x_1^n=a \right\} \right) , \end{aligned}$$

for n large enough, and estimates

$$\begin{aligned} {\mathbb {P}}(B_{n,\epsilon })\le & {} \sum _{a \in {{\,\textrm{supp}\,}}{\mathbb {P}}_n} \sum _{j=1}^{\lfloor \text {e}^{- \log {\widehat{{\mathbb {P}}}}_{n-\tau _n}(a_1^{n-\tau _n}) - n \epsilon }\rfloor }\sum _{\zeta \in {\mathcal {A}}^{j-1}} {\mathbb {P}}_{n+j-1+n} (a \zeta \, {\widehat{a}})\nonumber \\\le & {} \sum _{a \in {{\,\textrm{supp}\,}}{\mathbb {P}}_{n-\tau _n}}\sum _{b, b^\prime \in {{{\mathcal {A}}}}^{\tau _n}} \sum _{j=1}^{\lfloor \text {e}^{- \log {\widehat{{\mathbb {P}}}}_{n-\tau _n}(a) - n \epsilon }\rfloor } \sum _{\zeta \in {\mathcal {A}}^{j-1}} {\mathbb {P}}_{n+j-1+n} (ab \zeta \, b^\prime {\widehat{a}}) \nonumber \\\le & {} \text {e}^{2c_{n-\tau _n}}\sum _{a \in {{\,\textrm{supp}\,}}{\mathbb {P}}_{n-\tau _n}} \sum _{j=1}^{\lfloor \text {e}^{- \log {\widehat{{\mathbb {P}}}}_{n-\tau _n}(a) - n \epsilon }\rfloor }\sum _{\zeta \in {\mathcal {A}}^{j-1}} {\mathbb {P}}_{j-1} ( \zeta ){\mathbb {P}}_{n-\tau _n}(a){{\widehat{{\mathbb {P}}}}}_{n-\tau _n}( {a})\,\nonumber \\\le & {} \text {e}^{2c_{n-\tau _n}}\sum _{a\in {{\,\textrm{supp}\,}}{\mathbb {P}}_{n-\tau _n}} \text {e}^{-\log {\widehat{{\mathbb {P}}}}_{n-\tau _n}(a)-n\epsilon }{\mathbb {P}}_{n-\tau _n}(a) {\widehat{{\mathbb {P}}}}_{n-\tau _n}(a)\nonumber \\ \,= & {} \text {e}^{2c_{n-\tau _n}-n\epsilon }. \end{aligned}$$
(24)

The final estimate and the assumption that \(c_n\) and \(\tau _n\) are o(n) give the desired summability condition. In Step 3, one first chooses, for n large enough, a natural number m(a) so that

$$\begin{aligned} \text {e}^{-\log {\widehat{{\mathbb {P}}}}_n(a) + \frac{1}{2} n\epsilon } \le m(a) - n \le m(a) - n + \tau _n <\text {e}^{-\log {\widehat{{\mathbb {P}}}}_n(a) + n\epsilon } \end{aligned}$$
(25)

and replaces (17) with the estimates

$$\begin{aligned} {\mathbb {P}}(E_{n,\epsilon })&\le \sum _{a\in {{\,\textrm{supp}\,}}{\mathbb {P}}_n}\sum _{b^\prime \in {{{\mathcal {A}}}}^{\tau _n}}\sum _{b \in {\mathcal {A}}^{m}} {\mathbb {P}}\left( \left\{ x: {\widehat{R}}_n(x) > m-n+\tau _n \text { and } x_{1}^{n+\tau _n+m}=ab^\prime b \right\} \right) \\ {}&\le \sum _{a\in {{\,\textrm{supp}\,}}{\mathbb {P}}_n}\sum _{b^\prime \in {{{\mathcal {A}}}}^{\tau _n}} \sum _{b \in {\mathcal {A}}^{m}} \\&\quad {\mathbb {P}}\left( \left\{ x: x_1^{n+\tau _n+m}=ab^\prime b \text { and } b_k^{k+n-1}\not ={{\widehat{a}}} \text { for } 1\le k \le m-n\right\} \right) \\\,&\le \text {e}^{c_n}\sum _{a\in {{\,\textrm{supp}\,}}{\mathbb {P}}_n} \sum _{b \in {\mathcal {A}}^m} {\mathbb {P}}_n\times {\mathbb {P}}_m\left( \left\{ (a, b): b_k^{k+n-1}\not ={{\widehat{a}}} \text { for } 1\le k \le m-n \right\} \right) . \end{aligned}$$

At this point, one proceeds in exactly the same way as in Sect. 5 to derive the estimate

$$\begin{aligned} {\mathbb {P}}(E_{n, \epsilon })\le \text {e}^{c_n} {\mathbb {P}}\times {{\widehat{{\mathbb {P}}}}} \left( \left\{ (x, y): W_n(x, y)> \text {e}^{-\log {\widehat{{\mathbb {P}}}}_n(x_1^n) + \frac{1}{2} n\epsilon } \right\} \right) , \end{aligned}$$

which, combined with Hypothesis ii, yields the desired summability. \(\square \)

Proof of Theorem 6.2

One again follows the same strategy. In Step 1, the \({\mathbb {P}}\)-almost sure validity of (4) now relies on Hypothesis i”. In Step 2, the sets \(B_{n, \epsilon }\) are the same as in (13) and one starts with the identity

$$\begin{aligned} {\mathbb {P}}( B_{n,\epsilon } )&= \sum _{a \in {{\,\textrm{supp}\,}}{\mathbb {P}}_n} \sum _{j=1}^{\lfloor \text {e}^{- \log {\widehat{{\mathbb {P}}}}_n(a) - n \epsilon }\rfloor }{\mathbb {P}}(\{ x : {\widehat{R}}_n(x) = j \} \cap [a]), \end{aligned}$$

which gives

$$\begin{aligned} {\mathbb {P}}( B_{n,\epsilon } )&\le \sum _{a \in {{\,\textrm{supp}\,}}{\mathbb {P}}_n} \sum _{j=1}^{\lfloor \text {e}^{- \log {\widehat{{\mathbb {P}}}}_n(a) - n \epsilon }\rfloor }{\mathbb {P}}([a_1^{n-\tau _{n,K}}] \cap \{ x : {\widehat{R}}_n(a\sigma ^{n}(x) = j \}) \\&= \sum _{a \in {{\,\textrm{supp}\,}}{\mathbb {P}}_n} {\mathbb {P}}\left( \sigma ^{-\tau _{n, K}}[a_1^{n-\tau _{n,K}}] \cap \bigcup _{j=1}^{\lfloor \text {e}^{- \log {\widehat{{\mathbb {P}}}}_n(a) - n \epsilon } \rfloor }\sigma ^{-\tau _{n, K}}\{ x : {\widehat{R}}_n(a\sigma ^{n}(x)) = j \}\right) \end{aligned}$$

as soon as n is large enough that \(n - \tau _{n,K} \ge 1\). (This is possible because \(\tau _{n,K}\) is o(n).) Since each of the \(\lfloor \text {e}^{- \log {\widehat{{\mathbb {P}}}}_n(a) - n \epsilon }\rfloor \) sets of the form \(\sigma ^{-\tau _{n,K}}\{ x: {\widehat{R}}_n(a\sigma ^{n}(x)) = j \}\) is also necessarily of the form \(\sigma ^{- n - \tau _{n,K}}(B)\) for some \(B \in {\mathcal {F}}_{\text {fin}}\) and has probability bounded above by \({\widehat{{\mathbb {P}}}}_n(a)\), Hypothesis i’ gives that

$$\begin{aligned} \begin{aligned} {\mathbb {P}}( B_{n,\epsilon } )&\le \sum _{a \in {{\,\textrm{supp}\,}}{\mathbb {P}}_n} \left( \text {e}^{c_{n, K}} {\mathbb {P}}_{n-\tau _{n, K}}(a_1^{n-\tau _{n,K}}) \text {e}^{- \log {\widehat{{\mathbb {P}}}}_n(a) - n \epsilon } {\widehat{{\mathbb {P}}}}_n(a) + \text {e}^{-nK} \right) \\\,&\le \text {e}^{c_{n, K} + \tau _{n,K} \log |{\mathcal {A}}| - n\epsilon } + \text {e}^{n\log |{\mathcal {A}}|-nK}, \end{aligned} \end{aligned}$$

where we used \({{\,\textrm{supp}\,}}{\mathbb {P}}_n \subseteq {{\,\textrm{supp}\,}}{\mathbb {P}}_{n-\tau _{n,K}} \times {\mathcal {A}}^{\tau _{n,K}}\) to get the second inequality. If \(K > \log |{\mathcal {A}}|\), the last estimate gives the desired summability since both \(c_{n,K}\) and \(\tau _{n,K}\) are o(n). We now turn to Step 3. With \(E_{n, \epsilon }\) as in (13) and

$$\begin{aligned} G_{n,K} := \left\{ x : {\widehat{{\mathbb {P}}}}([x_1^n] )\ge \text {e}^{- nK} \right\} , \end{aligned}$$

it suffices to show that for all \(\epsilon > 0\) and all \(K \in \mathbb {N}\) large enough, the summability condition

$$\begin{aligned} \sum _{n = 1}^\infty {\mathbb {P}}(E_{n,\epsilon } \cap G_{n,K}) < \infty \end{aligned}$$
(26)

holds.Footnote 6 The identity

$$\begin{aligned} {\mathbb {P}}(E_{n,\epsilon } \cap G_{n,K})&= \sum _{a \in {\mathcal {A}}^n} {\mathbb {P}}\left( \left\{ x \in G_{n,K} : {\widehat{R}}_n(x) \ge \text {e}^{-\log {\widehat{{\mathbb {P}}}}_n(a) + n\epsilon } \right\} \cap [a]\right) \end{aligned}$$

gives

$$\begin{aligned} {\mathbb {P}}(E_{n,\epsilon } \cap G_{n,K}) \le \sum _{\begin{array}{c} a \in {{\,\textrm{supp}\,}}{\mathbb {P}}_n \\ {\widehat{{\mathbb {P}}}}_n(a) \ge \text {e}^{-nK} \end{array}} {\mathbb {P}}\left( [a] \cap \bigcap _{k=1}^{\lfloor \text {e}^{-\log {\widehat{{\mathbb {P}}}}_n(a) + n\epsilon } \rfloor -1}\sigma ^{-n-k+1} ([{{\widehat{a}}}]^{{\textsf{C}}})\right) . \end{aligned}$$
(27)

Setting

$$\begin{aligned} C_{n, K, \epsilon }(a):=\lfloor \text {e}^{-\log {\widehat{{\mathbb {P}}}}_n(a) + n\epsilon } \rfloor -\tau _{n,K}-1, \end{aligned}$$

and using an obvious inclusion, \(\sigma \)-invariance and then Hypothesis i’, one derives

$$\begin{aligned} \begin{aligned}&{\mathbb {P}}\left( [a] \cap \bigcap _{k=1}^{\lfloor \text {e}^{-\log {\widehat{{\mathbb {P}}}}_n(a) + n\epsilon } \rfloor -1}\sigma ^{-n-k+1} ([{{\widehat{a}}}]^{{\textsf{C}}})\right) \\&\quad \le {\mathbb {P}}\left( [a] \cap \bigcap _{k=\tau _{n,K}+1}^{\lfloor \text {e}^{-\log {\widehat{{\mathbb {P}}}}_n(a) + n\epsilon } \rfloor -1}\sigma ^{-n-k+1} ([{{\widehat{a}}}]^{{\textsf{C}}})\right) \\&\quad \le \text {e}^{c_{n,K}} {\mathbb {P}}([a] ){\mathbb {P}}\left( \bigcap _{k=1}^{C_{n, K, \epsilon }(a)} \sigma ^{-k+1} ([{{\widehat{a}}}]^{{\textsf{C}}})\right) + \text {e}^{-Kn}. \end{aligned} \end{aligned}$$
(28)

The identities

$$\begin{aligned}&{\mathbb {P}}\left( \left\{ y : y_{k}^{k+n-1} \ne {\widehat{a}}, \, 1\le k \le C_{n,K, \epsilon }(a)\right\} \right) \\&\quad = {\mathbb {P}}_{C_{n, K, \epsilon }+ n}\left( \left\{ b : b_k^{k+n-1} \ne {\widehat{a}}, \,1\le k \le C_{n,K, \epsilon }(a)\right\} \right) \\\,&\quad = {\mathbb {P}}_{C_{n, K, \epsilon } + n}\left( \left\{ {\widehat{b}} : b_k^{k+n-1} \ne a, \,1\le k \le C_{n, K, \epsilon }(a)\right\} \right) \\\,&\quad = {\widehat{{\mathbb {P}}}}_{C_{n, K, \epsilon }+ n}\left( \left\{ b : b_k^{k+n-1} \ne a, \,1\le k \le C_{n, k, \epsilon }(a)\right\} \right) , \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} {\mathbb {P}}([a]){\widehat{{\mathbb {P}}}}_{C_{n,K, \epsilon }(a) + n}&\left( \left\{ b: b_k^{k+n-1}\not = a,\,1\le k \le C_{n, K, \epsilon }(a)\right\} \right) \\\,&= ({\mathbb {P}}\times {\widehat{{\mathbb {P}}}})\left( \left\{ (x,y): W_n(x,y) > C_{n,K,\epsilon }(x_1^n)\right\} \cap ([a] \times \Omega )\right) , \end{aligned} \end{aligned}$$

further give

$$\begin{aligned}{} & {} {\mathbb {P}}(B_{n,\epsilon } \cap G_{n,K}) \nonumber \\{} & {} \quad \le \sum _{\begin{array}{c} a \in {{\,\textrm{supp}\,}}{\mathbb {P}}_n \\ {\widehat{{\mathbb {P}}}}_n(a) \ge \text {e}^{- nK} \end{array}} \text {e}^{c_{n,K}} ({\mathbb {P}}\times {\widehat{{\mathbb {P}}}})\left( \left\{ (x,y): W_n(x,y)> C_{n, K, \epsilon }(x_1^n)\right\} \cap ([a] \times \Omega )\right) + \text {e}^{-nK}\nonumber \\{} & {} \quad \le \text {e}^{c_{n,K}}({\mathbb {P}}\times {\widehat{{\mathbb {P}}}})\left( \left\{ (x,y): {\widehat{{\mathbb {P}}}}([x_1^n]) \ge \text {e}^{-nK} \text { and } W_n(x,y) > C_{n,K, \epsilon }(x_1^n) \right\} \right) \nonumber \\{} & {} \qquad + \text {e}^{n\log |{\mathcal {A}}|-nK}. \end{aligned}$$
(29)

Note that for n large enough,

$$\begin{aligned} C_{n, K, \epsilon }(x_1^n) > \text {e}^{-\log {\widehat{{\mathbb {P}}}}([x_1^n]) + \frac{1}{2} n\epsilon } \end{aligned}$$
(30)

for all \(x_1^n\in {{{\mathcal {A}}}}^n\). Taking \(K>\log |{\mathcal {A}}|\), the estimates (29)–(30) and Hypothesis ii’ give the summability condition (26). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cristadoro, G., Degli Esposti, M., Jakšić, V. et al. Recurrence times, waiting times and universal entropy production estimators. Lett Math Phys 113, 19 (2023). https://doi.org/10.1007/s11005-023-01640-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-023-01640-8

Keywords

Mathematics Subject Classification

Navigation