Skip to main content
Log in

Witt invariants from q-series \({\hat{Z}}\)

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We present a relation between the Witt invariants of 3-manifolds and the \({\hat{Z}}\)-invariants. It provides an alternative approach to compute the Witt invariants of 3-manifolds, which were originally defined geometrically in four dimensions. We analyze various homology spheres including a hyperbolic manifold using this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The normalization used here is \(\tau [S^3;k]=1\).

  2. We used the fact that \(\textrm{Spin}^c (Y)\) is affinely isomorphic to \(H_1 (Y; \mathbb {Z})\).

  3. Since it is clear from the context whether L stands for the link \(L(\Gamma )\) or the number of link components, we use L interchangeably.

  4. The refined WRT invariant requires a different version of the reciprocity formula than the one used in [13].

  5. \(\mathbb {Z}_2\) homology spheres can bound a smooth W [25]. Moreover, the vanishing of the spin cobordism group of 3-manifolds \(\Omega ^{spin}_3 = 0\) [14] implies that a \(\textrm{Spin}(M)\) structure extends to a \(\textrm{Spin}(W)\) structure.

  6. \(\eta (s)\) is defined by eigenvalues of a first order differential operator on W [2] (1.7). Note that, without \(\eta (0)\) term, it is the classical Hirzebruch signature theorem [22].

  7. Since \(H^{1}(\mathbb {Z}HS ;\mathbb {Z}_3)=0\) so \(d(Y)=0\), which sets the above value of w(Y).

  8. Our orientation convention for the manifold is opposite to that of [18].

  9. This is a typo in Sect. 8 of [4]. I would like to thank Sarah Harrison for informing the correct expression.

References

  1. Akutsu, Y., Deguchi, T., Ohtsuki, T.: Invariants of colored links. J. Knot Theory Ramif. 1(02), 161–184 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Atiyah, M., Patodi, V., Singer, I.: Spectral asymmetry and Riemannian geometry. I. Math. Proc. Camb. Philos. Soc. 77(1), 43–69 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chae, J.: Knot Complement, ADO invariants and their deformations for torus knots. In: SIGMA, vol. 16, p. 134 (2020). arxiv:2007.13277

  4. Cheng, M., Chun, S., Ferrari, F., Gukov, S., Harrison, S.: 3d modularity. J. High Energy Phys. 10, 1–95 (2019)

    MathSciNet  MATH  Google Scholar 

  5. Casson, A., Gordon, C.: On slice knots in dimension three. In: Proceedings of Symposia in Pure Mathematics, vol. 32 (1978)

  6. Chung, H.-J.: BPS invariants for Seifert manifolds. J. High Energy Phys. 113, 1–67 (2020)

    MathSciNet  MATH  Google Scholar 

  7. Douglas, C.L., Henriques, A.G., Hill, M.A.: Homological obstructions to string orientations. Int. Math. Res. Not. 2011(18), 4074–4088 (2011). arXiv:0810.2131

    MathSciNet  MATH  Google Scholar 

  8. Ekholm, T., Gruen, A., Gukov, S., Kucharski, P., Park, S., Stošić, M., Sułkowski, P.: Branches, quivers, and ideals for knot complements. arXiv:2110.13768

  9. Gukov, S., Hsin, P.-S., Nakajima, H., Park, S.H., Pei, D., Sopenko, N.: Rozansky–Witten geometry of Coulomb branches and logarithmic knot invariants. arxiv:2005.05347

  10. Gukov, S., Manolescu, C.: A two-variable series for knot complements. To appear in Quantum Topol. arxiv:1904.06057

  11. Gukov, S., Putrov, P., Park, S.: Cobordism invariants from BPS q-series. Ann. Henri Poincare 22, 4173–4203 (2021). arxiv:2009.11874

    Article  MathSciNet  MATH  ADS  Google Scholar 

  12. Gukov, S., Putrov, P., Vafa, C.: Fivebranes and 3-manifold homology. J. High Energy Phys. 07, 71 (2017). arxiv:1602.05302

    Article  MathSciNet  MATH  ADS  Google Scholar 

  13. Gukov, S., Pei, D., Putrov, P., Vafa, C.: BPS spectra and 3-manifold invariants. J. Knot Theory Ramif. 29(02), 2040003 (2020). arxiv:1701.06567

    Article  MathSciNet  MATH  Google Scholar 

  14. Gompf, R., Stipsicz, A.: 4-Manifolds and Kirby Calculus. Graduate Studies in Mathematics, AMS, Providence (1999)

    Book  MATH  Google Scholar 

  15. Hikami, K.: Quantum invariant, modular form, and lattice points. Int. Math. Res. Not. 2005(3), 121–154 (2005). arXiv:math-ph/0409016

    Article  MathSciNet  MATH  Google Scholar 

  16. Hikami, K.: Quantum invariant, modular form, and lattice points 2. J. Math. Phys. 47, 102301 (2006). arXiv:math/0604091

    Article  MathSciNet  MATH  ADS  Google Scholar 

  17. Kirby, R., Melvin, P.: The 3-manifold invariants of Witten and Reshetikhin–Turaev for \(sl(2, {\mathbb{C}})\). Invent. Math. 105, 473–545 (1991)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  18. Kirby, R., Melvin, P., Zhang, X.: Quantum invariants at the sixth root of unity. Commun. Math. Phys. 151, 607–617 (1993)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  19. Lawrence, R., Zagier, D.: Modular forms and quantum invariants of 3-manifolds. Asian J. Math. 3, 93 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Milnor, J., Husemoller, D.: Symmetric Bilinear Forms. A Series of Modern Surveys in Mathematics, vol. 73. Springer, Berlin (1973)

    Book  MATH  Google Scholar 

  21. Milnor, J., Kervaire, M.: Bernoulli numbers, homotopy groups, and a theorem of Rohlin, 1960. In: Proceedings of the International Congress of Mathematicians (1958)

  22. Milnor, J., Stasheff, J.: Characteristic classes (AM-76). Ann. Math. Stud. 76, 80 (1974)

    Google Scholar 

  23. Rokhlin, V.: New results in the theory of four-dimensional manifolds. Dokl. Acad. Nauk. SSSR (N.S.) 84, 221–224 (1952)

    MathSciNet  Google Scholar 

  24. Reshetikhin, N., Turaev, V.: Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math. 103(3), 547–597 (1991)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  25. Saveliev, N.: Invariants for Homology 3-Spheres. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  26. Thurston, W.: The Geometry and Topology of Three-Manifolds, Princeton University Lecture Notes. http://library.msri.org/books/gt3m

  27. Thurston, W.: Three dimensional manifolds, Kleinian groups and hyperbolic geometry. Bull. Am. Math. Soc. 6(3), 357–381 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  28. Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121(3), 351–399 (1989)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  29. Zagier, D.: Quantum modular forms. Clay Math. Proc. 12 (2010)

Download references

Acknowledgements

I would like to thank Sungbong Chun, Sarah Harrison, Kazuhiro Hikami, Robion Kirby, Paul Melvin and Pavel Putrov for helpful explanations. I am grateful to Sergei Gukov for numerous explanations and the suggestion on this manuscript. I would also like to thank the referee for the suggestions that led to an improvement of my manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Chae.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

A Witt invariants for the Lens spaces

We summarize the Witt invariants for L(p, 1), where p is even.

\(-L(p ,1 )\)

\(w(Y) \in \mathbb {Z}/4\mathbb {Z}\)

\(d(Y) \in \mathbb {Z}\)

\(d(Y_1) \in \mathbb {Z}\)

\(\text {def}_{3}(1) \in \mathbb {Z}/4\mathbb {Z}\)

\( 2(1^3) \in \mathbb {Z}/4\mathbb {Z}\)

\(-L(2,1)\)

2

0

0

0

2

\(-L(4,1)\)

0

0

0

3

0

\(-L(6,1)\)

3

1

1

3

2

\(-L(8,1)\)

2

0

0

3

0

\(-L(10,1)\)

0

0

0

2

2

\(-L(12,1)\)

3

1

1

2

0

\(-L(14,1)\)

2

0

0

2

2

\(-L(16,1)\)

0

0

0

1

0

\(-L(18,1)\)

3

1

1

3

0

\(-L(20,1)\)

2

0

0

1

0

\(-L(22,1)\)

0

0

0

0

2

\(-L(24,1)\)

3

1

1

2

2

As written in Sect. 5.2, \(d(Y_0) = 2d(Y)\) and \(\text {def}_{3}(0) = 0\) modulo 4.

B \({\hat{Z}}\)-series for Brieskorn spheres and modular forms

We record \({\hat{Z}}\) for the manifolds in (12) and the formulas for the weight 1/2 and 3/2 modular forms at k-th root of unity.

$$\begin{aligned}{} & {} {\hat{Z}} [S^{3}_{-\frac{1}{r}}(T(2,5)) ;q] = q^{\frac{71}{40}-\frac{r}{4}-\frac{5}{2+20 r}} \\{} & {} \quad \left( \Psi ^{(30r -7)}_{100r+10} (q) - \Psi ^{(30r +13 )}_{100r+10}(q) - \Psi ^{(70r -3)}_{100r+10}(q) + \Psi ^{(70r +17)}_{100r+10}(q) \right) \\{} & {} {\hat{Z}} [S^{3}_{-\frac{1}{r}}(T(2,7)) ;q] = q^{\frac{143}{56}-\frac{r}{4}-\frac{7}{2+28 r}} \\{} & {} \quad \left( \Psi ^{(70r -9)}_{196r+14} (q) - \Psi ^{(70r +19)}_{196r+14}(q) - \Psi ^{(126r -5)}_{196r+14}(q) + \Psi ^{(126r +23)}_{196r+14}(q) \right) \\{} & {} {\hat{Z}} [S^{3}_{-\frac{1}{r}}(T(3,5)) ;q] = q^{\frac{191}{60}-\frac{r}{4}-\frac{15}{4+60 r}} \\{} & {} \quad \left( \Psi ^{(105r -8)}_{225r+15} (q) - \Psi ^{(105r +22)}_{225r+15}(q) - \Psi ^{(195 r-2 )}_{225r+15}(q) + \Psi ^{(195 r + 28)}_{225r+15}(q) \right) \\{} & {} {\hat{Z}} [S^{3}_{-\frac{1}{r}}(T(3,7)) ;q] = q^{\frac{383}{84}-\frac{r}{4}-\frac{21}{4+84 r}} \\{} & {} \quad \left( \Psi ^{(231 r -10)}_{441r+21} (q) - \Psi ^{(231 r +32)}_{441r+21}(q) - \Psi ^{(357 r-4 )}_{441r+21}(q) + \Psi ^{(357 r + 38)}_{441r+21}(q) \right) \\{} & {} {\hat{Z}} [S^{3}_{-\frac{1}{r}}(T(2,-5)) ;q] = q^{-\frac{71}{40}+\frac{5}{2-20 r}-\frac{r}{4}}\\{} & {} \quad \left( \Psi ^{(30r -13)}_{100r-10} (q) - \Psi ^{(30r +7 )}_{100r-10}(q) - \Psi ^{(70r -17)}_{100r-10}(q) + \Psi ^{(70r +3)}_{100r-10}(q) \right) \\{} & {} {\hat{Z}} [S^{3}_{-\frac{1}{r}}(T(2,-7)) ;q] = q^{-\frac{143}{56}+\frac{7}{2-28 r}-\frac{r}{4}} \\{} & {} \quad \left( \Psi ^{(70r -19)}_{196r-14} (q) - \Psi ^{(70r + 9)}_{196r-14}(q) - \Psi ^{(126r -23)}_{196r-14}(q) + \Psi ^{(126r +5)}_{196r-14}(q) \right) \\{} & {} {\hat{Z}} [S^{3}_{-\frac{1}{r}}(T(3,-5)) ;q] = q^{-\frac{191}{60}+\frac{15}{4-60 r}-\frac{r}{4}}\\{} & {} \quad \left( \Psi ^{(105r -22)}_{225r-15} (q) - \Psi ^{(105r +8)}_{225r-15}(q) - \Psi ^{(195 r-28 )}_{225r-15}(q) + \Psi ^{(195 r + 2)}_{225r-15}(q) \right) \\{} & {} {\hat{Z}} [S^{3}_{-\frac{1}{r}}(T(3,-7)) ;q] = q^{-\frac{383}{84}+\frac{21}{4-84 r}-\frac{r}{4}} \\{} & {} \quad \left( \Psi ^{(231 r -32)}_{441r-21} (q) - \Psi ^{(231 r +10)}_{441r-21}(q) - \Psi ^{(357 r- 38 )}_{441r-21}(q) + \Psi ^{(357 r + 4)}_{441r-21}(q) \right) \end{aligned}$$

The Eichler integrals of the \(w=1/2\) and \(w=3/2\) false theta functions \(\Phi _{m,r}(q)\) and \(\Psi _{m,r}(q)\) at k-th primitive root of unity are given by [15, 16].

$$\begin{aligned} \Phi _{m,r}(e^{i 2 \pi /k})&= -(m k) \sum _{n=1}^{2 m k} \left( \left( \frac{n}{2 m k}\right) ^2-\frac{n}{2 m k}+\frac{1}{6}\right) \psi ^{\prime , (r)}_{2m}(n) e^{\frac{i \pi n^2}{2 m k}}\\ \psi ^{\prime , (r)}_{2m}(n)&: = {\left\{ \begin{array}{ll} 1, n \equiv \pm r\quad \text {mod}\quad 2m\\ 0, \text {otherwise} \end{array}\right. } \end{aligned}$$
$$\begin{aligned} \Psi ^{(r)}_{m} \equiv \Psi _{m,r}(e^{i 2 \pi /k})&= \sum _{n=1}^{2 m k} \left( \frac{1}{2} - \frac{n}{2mk} \right) \psi ^{(r)}_{2m}(n) e^{\frac{i \pi n^2}{2 m k}} \\ \psi ^{(r)}_{2m}(n)&: = {\left\{ \begin{array}{ll} \pm 1, n \equiv \pm r\quad \text {mod}\quad 2m\\ 0, \text {otherwise} \end{array}\right. } \end{aligned}$$

C \({\hat{Z}}\)-series for plumbed 3-manifolds

We state a formula for \({\hat{Z}}\) of (weakly) negative definite plumbed 3-manifolds \(Y(\Gamma )\) having \(b_{1} (Y(\Gamma ))=0\) [10, 13]:

$$\begin{aligned} {\hat{Z}}_{b}[Y(\Gamma ) ;q]= & {} (-1)^{\pi } q^{\frac{3\sigma - Tr B}{4}}\, \prod _{v \in Vert} PV \oint _{|z_v|=1} \nonumber \\{} & {} \frac{d z_v}{i2\pi z_v} \left( z_v - \frac{1}{z_v} \right) ^{2-deg(v)} \Theta ^{Y}_{b}(\vec {z};q), \end{aligned}$$
(17)

where

$$\begin{aligned}{} & {} \Theta ^{Y}_{b}(\vec {z};q) = \sum _{\vec {w} \in 2B\mathbb {Z}^{L} + \vec {b}} q^{-\frac{(\vec {w},B^{-1}\vec {w})}{4}} \prod _{v \in Vert} z_{v}^{w_v},\qquad b \in \textrm{Spin}^c(Y)\cong H_1(Y) \\{} & {} \quad B= \text {adjacency matrix of}\, \Gamma ,\qquad \pi = \sharp \text { (positive eigenvalues of B)},\qquad \\{} & {} \quad \sigma = \text {signature}(B), PV= \lim _{\epsilon \rightarrow 0 } \frac{1}{2} \left( \oint _{|z_v|=1 + \epsilon } + \oint _{|z_v|=1 - \epsilon } \right) \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chae, J. Witt invariants from q-series \({\hat{Z}}\). Lett Math Phys 113, 3 (2023). https://doi.org/10.1007/s11005-022-01629-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-022-01629-9

Keywords

Mathematics Subject Classification

Navigation