Skip to main content
Log in

Positive line modules over the irreducible quantum flag manifolds

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Noncommutative Kähler structures were recently introduced as a framework for studying noncommutative Kähler geometry on quantum homogeneous spaces. It was subsequently observed that the notion of a positive vector bundle directly generalises to this setting, as does the Kodaira vanishing theorem. In this paper, by restricting to covariant Kähler structures of irreducible type (those having an irreducible space of holomorphic 1-forms) we provide simple cohomological criteria for positivity, allowing one to avoid explicit curvature calculations. These general results are applied to our motivating family of examples, the irreducible quantum flag manifolds \(\mathcal {O}_q(G/L_S)\). Building on the recently established noncommutative Borel–Weil theorem, every relative line module over \(\mathcal {O}_q(G/L_S)\) can be identified as positive, negative, or flat, and it is then concluded that each Kähler structure is of Fano type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Artin, M., Zhang, J.J.: Noncommutative projective schemes. Adv. Math. 109(2), 228–287 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Atiyah, M.F.: Riemann surfaces and spin structures. Ann. Sci. École Norm. Sup. 4(4), 47–62 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  3. Atiyah, M.F., Drinfeld, V.G., Hitchin, N.J., Manin, Y.I.: Construction of instantons. Phys. Lett. A 65(3), 185–187 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Baston, R.J., Eastwood, M.G.: The Penrose transform. Its interaction with representation theory. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (1989). Oxford Science Publications

  5. Beggs, E., Majid, S.: Spectral triples from bimodule connections and Chern connections. J. Noncommut. Geom. 11(2), 669–701 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beggs, E., Majid, S.: Quantum Riemannian Geometry. Grundlehren der mathematischen Wissenschaften, vol. 355, 1st edn. Springer, Cham (2019)

    Google Scholar 

  7. Beggs, E., Smith, P.S.: Noncommutative complex differential geometry. J. Geom. Phys. 72, 7–33 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Carotenuto, A., Díaz García, F., Ó Buachalla, R.: A Borel–Weil theorem for the irreducible quantum flag manifolds. Int. Math. Res. Not. (to appear) arXiv preprint arXiv:2112.03305

  9. Carotenuto, A., Mrozinski, C., Ó Buachalla, R.: A Borel–Weil theorem for the quantum Grassmannians. arXiv preprint arXiv:1611.07969v4

  10. Carotenuto, A., Ó Buachalla, R.: Bimodule connections for relative line modules over the irreducible quantum flag manifolds. arXiv preprint arXiv:2202.09842

  11. D’Andrea, F., Da̧browski, L.: Dirac operators on quantum projective spaces. Commun. Math. Phys. 295(3), 731–790 (2010)

  12. D’Andrea, F., Landi, G.: Anti-selfdual connections on the quantum projective plane: monopoles. Commun. Math. Phys. 297(3), 841–893 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. D’Andrea, F., Landi, G.: Anti-selfdual connections on the quantum projective plane: instantons. Commun. Math. Phys. 333(1), 505–540 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Das, B., Ó Buachalla, R., Somberg, P.: Compact quantum homogeneous Kähler spaces. arXiv preprint arXiv:1910.14007

  15. Das, B., Ó Buachalla, R., Somberg, P.: Spectral gaps for twisted Dolbeault–Dirac operators over the irreducible quantum flag manifolds. (in preparation)

  16. Díaz García, F., Krutov, A., Ó Buachalla, R., Somberg, P., Strung, K.R.: Holomorphic relative Hopf modules over the irreducible quantum flag manifolds. Lett. Math. Phys. 111(10), 24 (2021)

  17. Dijkhuizen, M.S., Koornwinder, T.H.: CQG algebras: a direct algebraic approach to compact quantum groups. Lett. Math. Phys. 32(4), 315–330 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Dijkhuizen, M.S., Stokman, J.: Quantized flag manifolds and irreducible \(*\)-representations. Commun. Math. Phys. 2(203), 297–324 (1999)

    MathSciNet  MATH  Google Scholar 

  19. Drinfeld, V.G.: Quantum groups. In: Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), pp. 798–820. Amer. Math. Soc., Providence, RI (1987)

  20. Dubois-Violette, M., Madore, J., Masson, T., Mourad, J.: Linear connections on the quantum plane. Lett. Math. Phys. 35(4), 351–358 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Dubois-Violette, M., Madore, J., Masson, T., Mourad, J.: On curvature in noncommutative geometry. J. Math. Phys. 37(8), 4089–4102 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Dubois-Violette, M., Michor, P.W.: Connections on central bimodules in noncommutative differential geometry. J. Geom. Phys. 20(2–3), 218–232 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Esnault, H., Viehweg, E.: Lectures on Vanishing Theorems. DMV Seminar, vol. 20. Birkhäuser, Basel (1992)

    Book  MATH  Google Scholar 

  24. Faddeev, L.D., Reshetikhin, N.Y., Takhtadzhyan, L.A.: Quantization of Lie groups and Lie algebras. Algebra i Analiz 1(1), 178–206 (1989)

    MathSciNet  MATH  Google Scholar 

  25. Heckenberger, I., Kolb, S.: The locally finite part of the dual coalgebra of quantized irreducible flag manifolds. Proc. Lond. Math. Soc. (3) 89(2), 457–484 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Heckenberger, I., Kolb, S.: De Rham complex for quantized irreducible flag manifolds. J. Algebra 305(2), 704–741 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Heckenberger, I., Kolb, S.: Differential forms via the Bernstein–Gelfand–Gelfand resolution for quantized irreducible flag manifolds. J. Geom. Phys. 57(11), 2316–2344 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Humphreys, J.E.: Introduction to Lie Algebras and Representation Theory. Graduate Texts in Mathematics, vol. 9. Springer, New York (1978). (Second printing, revised)

    Google Scholar 

  29. Huybrechts, D.: Complex Geometry: An Introduction. Universitext, 1st edn. Springer, Berlin (2005)

    MATH  Google Scholar 

  30. Itoh, M., Nakajima, H.: Yang–Mills connections and Einstein–Hermitian metrics. In: Kähler metric and moduli spaces, Adv. Stud. Pure Math., vol. 18, pp. 395–457. Academic Press, Boston, MA (1990)

  31. Jantzen, J.C.: Representations of Algebraic Groups. Mathematical Surveys and Monographs, vol. 107, 2nd edn. American Mathematical Society, Providence, RI (2003)

    Google Scholar 

  32. Jimbo, M.: A \(q\)-analogue of \(U(\mathfrak{gl} (N+1))\), Hecke algebra, and the Yang-Baxter equation. Lett. Math. Phys. 11(3), 247–252 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Khalkhali, M., Landi, G., van Suijlekom, W.D.: Holomorphic structures on the quantum projective line. Int. Math. Res. Not. 4, 851–884 (2011)

    MathSciNet  MATH  Google Scholar 

  34. Klimyk, A., Schmüdgen, K.: Quantum Groups and Their Representations. Texts and Monographs in Physics. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  35. Koszul, J.-L., Malgrange, B.: Sur certaines structures fibrées complexes. Arch. Math. (Basel) 9, 102–109 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  36. Krähmer, U., Tucker-Simmons, M.: On the Dolbeault–Dirac operator of quantized symmetric spaces. Trans. Lond. Math. Soc. 2(1), 33–56 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lübke, M., Teleman, A.: The Kobayashi–Hitchin Correspondence. World Scientific, River Edge (1995)

    Book  MATH  Google Scholar 

  38. Majid, S.: Noncommutative Riemannian and spin geometry of the standard \(q\)-sphere. Commun. Math. Phys. 256, 255–285 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Masuoka, A., Wigner, D.: Faithful flatness of Hopf algebras. J. Algebra 170(1), 156–164 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  40. Matassa, M.: Kähler structures on quantum irreducible flag manifolds. J. Geom. Phys. 145, 103477 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ó Buachalla, R.: Noncommutative complex structures on quantum homogeneous spaces. J. Geom. Phys. 99, 154–173 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Ó Buachalla, R., Noncommutative Kähler structures on quantum homogeneous spaces. Adv. Math. 322, 892–939 (2017)

  43. Ó Buachalla, R., Štóviček, J., van Roosmalen, A.-C.: A Kodaira vanishing theorem for noncommutative Kähler structures. arXiv preprint arXiv:1801.08125

  44. Onishchik, A.L., Vinberg, E.B.: Lie groups and algebraic groups. Springer Series in Soviet Mathematics. Springer, Berlin (1990). Translated from the Russian and with a preface by D. A. Leites

  45. Polishchuk, A., Schwarz, A.: Categories of holomorphic vector bundles on noncommutative two-tori. Commun. Math. Phys. 236(1), 135–159 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Raynaud, M.: Contre-exemple au “vanishing theorem” en caractéristique \(p>0\). In: C. P. Ramanujam—A Tribute. Tata Inst. Fund. Res. Studies in Math., vol. 8, pp. 273–278. Springer, Berlin-New York (1978)

  47. Serre, J.-P.: Géométrie algébrique et géométrie analytique. Ann. Inst. Fourier Grenoble 6, 1–42 (1955–1956)

  48. Takeuchi, M.: Relative Hopf modules—equivalences and freeness criteria. J. Algebra 60(2), 452–471 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  49. Woronowicz, S.L.: Compact matrix pseudogroups. Commun. Math. Phys. 111(4), 613–665 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Part of this work was carried out when RÓB and AK visited KRS at the Institute of Mathematics, Astrophysics and Particle Physics at Radboud University, and we thank the institute for their support. The authors thank the Université libre de Bruxelles for hosting FDG during September and October 2019. KRS and RÓB are also grateful for a visit to Mathematisches Forschungsintitut Oberwolfach in December 2018 where AK was a Leibniz fellow, and to the Mathematics Department at the University of Zagreb during July 2019. All five authors benefited from meeting at the conference “Quantum Flag Manifolds in Prague” at the Charles University in September 2019. We also thank Matthias Fischmann, Vincent Grandjean, Dimitry Leites, Paolo Saracco, Jan Šťovíček, Adam-Christaan van Roosmalen, and Elmar Wagner for helpful discussions

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Réamonn Ó Buachalla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

FDG was partially funded by Conacyt (Consejo Nacional de Ciencia y Tecnología, México). AK was supported through the program “Oberwolfach Leibniz Fellows” by the Mathematisches Forschungsinstitut Oberwolfach in 2018 and by the QuantiXLie Centre of Excellence, a project cofinanced by the Croatian Government and European Union through the European Regional Development Fund—the Competitiveness and Cohesion Operational Programme (KK.01.1.1.01.0004). RÓB acknowledges FNRS support through a postdoctoral fellowship within the framework of the MIS Grant “Antipode” Grant Number F.4502.18. KRS was supported by a Radboud Excellence Initiative postdoctoral fellowship, a Sonata 9 NCN Grant 2015/17/D/ST1/02529. AK and KRS are currently funded by GAČR project 20-17488Y and RVO: 6798584. RÓB and PS are partially supported by the Grant GAČR \(306-33/19 06357\). RÓB and FDG are supported by the Charles University PRIMUS Grant PRIMUS/21/SCI/026.

Appendices

Appendix A: Some categorical equivalences

In this appendix, we present a number of categorical equivalences, all ultimately derived from Takeuchi’s equivalence [48]. These equivalences play a prominent role in the paper, giving us a formal framework in which to understand covariant differential calculi as relative Hopf modules.

1.1 A.1 Takeuchi’s equivalence

This subsection concisely presents Takeuchi’s equivalence for relative Hopf modules, as originally established in [48], and developed in [39]. We also present the monoidal version, as considered in [41, §4], and then restrict to the finitely generated subcategory of relative Hopf modules, as considered, for example, in [42, Corollary 2.5].

Let \(\pi : A \rightarrow H\) be a surjective Hopf algebra map between Hopf algebras A and H. Then, a homogeneous right H-coaction is given by the map \( \Delta _R:= (\textrm{id}\otimes \pi ) \circ \Delta : A \rightarrow A \otimes H. \) The associated quantum homogeneous space is defined to be the space of coinvariant elements, \(A^{\textrm{co}(H)}\), that is,

$$\begin{aligned} A^{\textrm{co}(H)}:= \{ a \in A \mid \Delta _R (a) = a \otimes 1 \}.\end{aligned}$$

For any quantum homogeneous space \(B = A^{\textrm{co}(H)}\), we define \(^A_B\textrm{Mod}_B\) to be the category whose objects are left A-comodules \(\Delta _L:\mathcal {F} \rightarrow A \otimes \mathcal {F}\), endowed with a B-bimodule structure such that \(\Delta _L(bfc) = \Delta _L(b)\Delta _L(f)\Delta (c)\), for all \(f \in \mathcal {F}, \, b,c \in B\), and whose morphisms are left A-comodule, B-bimodule, maps.

Let \(^H\!\textrm{Mod}_B\) denote the category of relative Hopf modules, that is, the category whose objects are left H-comodules \(\Delta _L: V \rightarrow H \otimes V\), endowed with a right B-module structure, such that \(\Delta _L(vb) = v_{(-1)}\pi (b_{(1)}) \otimes v_{(0)}b_{(2)}\), for all \(v \in V, \, b \in B\), and whose morphisms are left H-comodule maps and right B-module maps.

Consider the functor \(\Phi :{}^A_B\textrm{Mod}_B \rightarrow {}^{H}\textrm{Mod}_B\), given by \(\Phi (\mathcal {F}):= \mathcal {F}/B^+\mathcal {F}\), where the left H-comodule structure of \(\Phi (\mathcal {{{\mathcal {F}}}})\) is given by \( \Delta _L[f]:= \pi (f_{(-1)})\otimes [f_{(0)}], \) with square brackets denoting the coset of an element in \(\Phi (\mathcal {{{\mathcal {F}}}})\). In the other direction, we define a functor \(\Psi : {}^{H}\textrm{Mod}_B \rightarrow {}^A_B\textrm{Mod}_B\) by setting \(\Psi (V):= A \,\square _{H} V\), where the left A-comodule structures of \(\Psi (V)\) is defined on the first tensor factor, the right B-module structure is the diagonal one, and if \(\gamma \) is a morphism in \({}^{H}\textrm{mod}_B\), then \(\Psi (\gamma ):= \textrm{id}\otimes \gamma \).

An adjoint equivalence of categories between \({}^A_B\textrm{Mod}_B\) and \({}^{H}\textrm{Mod}_B\), which we call Takeuchi’s equivalence, is given by the functors \(\Phi \) and \(\Psi \), and the unit natural isomorphism

$$\begin{aligned} \textrm{U}: {{\mathcal {F}}}\rightarrow \Psi \circ \Phi ({{\mathcal {F}}}), \quad \quad f \mapsto f_{(-1)} \otimes [f_{(0)}]. \end{aligned}$$

The dimension \(\textrm{dim}({{\mathcal {F}}})\) of an object \({{\mathcal {F}}}\in {}^A_B\textrm{Mod}\) is the vector space dimension of \(\Phi ({{\mathcal {F}}})\). As observed in [41, Corollary 2.7], the inverse of the unit \(\textrm{U}\) of the equivalence admits a useful explicit description:

$$\begin{aligned} \textrm{U}^{-1}\!\left( \sum _i f_i \otimes [g_i] \right) = \sum _i f_iS\big ((g_i)_{(-1)}\big )(g_i)_{(0)}. \end{aligned}$$
(12)

Consider \(^A_B\text {Mod}_0\) the full subcategory of \({}^A_B\textrm{Mod}_B\) whose objects \({{\mathcal {F}}}\) satisfy \(B^+{{\mathcal {F}}}= {{\mathcal {F}}}B^+\). The corresponding full subcategory \({}^H\textrm{Mod}_0\) of \({}^H\textrm{Mod}_B\) is given by objects with the trivial right B-action. The category \(^A_B\text {Mod}_0\) comes equipped with a monoidal structure given by the tensor product \(\otimes _B\). Moreover, with respect to the obvious monoidal structure on \({}^H\textrm{Mod}_0\), Takeuchi’s equivalence is readily endowed with the structure of a monoidal equivalence (see [41, §4]). An immediate implication is that an object \({{\mathcal {E}}}\) is invertible (that is, it is a relative line module) if and only if \(\dim ({{\mathcal {E}}}) = 1\).

Finally, we consider \(^A_B\text {mod}_0\) the full subcategory of \({}^A_B\textrm{Mod}_0\) whose objects are finitely generated as left B-modules, and note that it is a monoidal subcategory of \({}^A_B\textrm{Mod}_0\). The corresponding full subcategory \({}^H\textrm{mod}\) of \({}^H\textrm{Mod}\) has as objects the finite-dimensional left H-comodules, and its monoidal structure is the usual tensor product of comodules.

1.2 A.2 Conjugates and duals

Let us now assume that A and H are Hopf \(*\)-algebras, and that \(\pi :A \rightarrow H\) is a Hopf \(*\)-algebra map. For any relative Hopf module \({{\mathcal {F}}}\), let \(\overline{{{\mathcal {F}}}}\) be the relative Hopf module whose bimodule structure is defined by \(b{\overline{f}}c = \overline{c^*fb^*}\), and whose left A-comodule structure is defined by \(\Delta _L({\overline{f}}):= (f_{(-1)})^* \otimes \overline{f_{(0)}}\). Note that as a right B-module, \(\overline{{{\mathcal {F}}}}\) is isomorphic to the conjugate of \({{\mathcal {F}}}\) as defined in 2.5, justifying the choice of notation. As shown in [43, Corollary 2.11], if \({{\mathcal {F}}}\in \, ^A_B\text {Mod}_0\), then \(\overline{{{\mathcal {F}}}} \in \, ^A_B\text {Mod}_0\). It is instructive to note that the corresponding operation, through Takeuchi’s equivalence, on any object in \(V \in \,^H\text {Mod}_0\) is the usual complex conjugate of V coming from the Hopf \(*\)-algebra structure of H.

We now restrict to the categories \(^A_B\textrm{mod}_0\) and \(^H\textrm{mod}\), and discuss dual objects. Since \(^H\textrm{mod}\) is a rigid monoidal category, \(^A_B\textrm{mod}\), or equivalently \(^A_B\textrm{mod}_0\), is a rigid monoidal category. In particular, every object \({{\mathcal {F}}}\in \, ^A_B\textrm{mod}_0\) admits a dual object, which we denote by \({}^{\vee }\!{{\mathcal {F}}}\). Moreover, as shown in [43, Appendix A], by extending its usual bimodule structure, we can give \(\, _{B}\textrm{Hom}({{\mathcal {F}}},B)\) the structure of an object in \(\,^A_B\textrm{Mod}_B\), with respect to which it is right dual to \({{\mathcal {F}}}\). Now \(^A_B\textrm{mod}_0\) is a monoidal subcategory of \(\,^A_B\textrm{Mod}_B\). Thus, since right duals are unique up to unique isomorphism, \({}^{\vee }\!{{\mathcal {F}}}\) must be isomorphic to \(\, _{B}\textrm{Hom}({{\mathcal {F}}},B)\), justifying the abuse of notation. Finally, we note that if H is a CQGA, then for any \(V \in \,^H\textrm{mod}_0\), its dual and conjugate are always isomorphic, see [34, Theorem 11.27] for details.

Appendix B: A remark on the definition of the quantum Levi subgroup

In this subsection, we show the image of the restriction map \(\pi _S\) defined in §4.3 is the type-1 dual of \(U_q({\mathfrak {l}}_S)\), for any subset of simple nodes of a semisimple Lie algebra \({\mathfrak {g}}\). In fact, this is taken as the definition of \(\mathcal {O}_q(L_S)\) in [18], and is the definition used in [16, 25, 26]. This result is a basic exercise in representation theory, and can be directly concluded from [27, Lemma 2.1]. We include a proof for the reader’s convenience.

Proposition B.1

Let S be a subset of the simple roots \(\Pi \) of \({\mathfrak {g}}\), then the Hopf \(*\)-algebra map \(\pi _S:\mathcal {O}_q(G) \rightarrow \mathcal {O}_q(L_S)\) is surjective.

Proof

Take an arbitrary finite-dimensional type-1 irreducible \(U_q({\mathfrak {g}})\)-module V and decompose it into irreducible type-1 \(U_q({\mathfrak {l}}_S)\)-submodules:

$$\begin{aligned} V \simeq \bigoplus _{\mu \, \in \mathcal {P}^+ \cup \mathcal {P}_{S^c}} W_{\mu }. \end{aligned}$$

This gives a corresponding coordinate coalgebra decomposition

$$\begin{aligned} \pi _S(C(V_{\lambda })) \simeq \bigoplus _{\mu \in \mathcal {P}^+ \cup \mathcal {P}_{S^c}} C(W_{\mu }). \end{aligned}$$
(13)

Thus, we see that the image of \(\pi _S\) is contained in \(\mathcal {O}_q(L_S)\), the type-1 dual of \(U_q({\mathfrak {l}}_S)\).

To prove surjectivity, we need to show that for every weight \(\nu \in \mathcal {P}^+ \cup \mathcal {P}_{S^c}\), the coordinate algebra \(C(W_{\nu })\) is contained in the image of \(\pi _S\). By (13), this would follow from a demonstration that every \(W_{\nu }\) appears as a \(U_q({\mathfrak {l}}_S)\)-submodule of some \(U_q({\mathfrak {g}})\)-module.

Every element of \(\mathcal {P}^+ \cup \mathcal {P}_{S^c}\) is a sum of weights of the form \(\lambda + \mu \), where

$$\begin{aligned} \lambda \in \mathcal {P}^+, \quad \quad \text { and } \quad \quad -\mu \in \mathcal {P}_{S^c} \cap \mathcal {P}^+. \end{aligned}$$

Choose a highest weight vector \(v_{\textrm{hw}}\) in the irreducible \(U_q({\mathfrak {g}})\)-module \(V_{\lambda }\), and choose a lowest weight vector \(v_{\textrm{lw}}\) in the irreducible \(U_q({\mathfrak {g}})\)-module \(V_{w_0(\mu )}\). We see that since

$$\begin{aligned} v_{\textrm{hw}} \otimes v_{\textrm{lw}} \in V_{\lambda } \otimes V_{\mu } \end{aligned}$$

is a \(U_q({\mathfrak {l}}_S)\)-highest weight vector, \(U_q({\mathfrak {l}}_S)v_{\textrm{hw}} \otimes v_{\textrm{lw}}\) is an irreducible \(U_q({\mathfrak {l}}_S)\)-submodule of \(V_{\lambda } \otimes V_{w_0(\mu )}\) of highest weight \(\lambda + \mu \). Thus, we see that \(C(W_{\lambda +\mu })\) is contained in the image of \(\pi _S\), and hence that \(\pi _S\) is surjective. \(\square \)

Appendix C: Tables for the irreducible quantum flag manifolds

We recall the standard pictorial description of the quantum Levi subalgebras defining the irreducible quantum flag manifolds, given in terms of Dynkin diagrams.

For a diagram of rank r, to the black node \(\alpha _x\) we associate the set \(S:= \{\alpha _1,\ldots ,\alpha _r\}\backslash \{\alpha _x\}\), with corresponding Levi subgroup \(L_S\). The irreducible quantum flag manifold is then given by the coinvariant subspace \(\mathcal {O}_q(G/L_S) \subseteq \mathcal {O}_q(G)\). Note that any automorphism of a Dynkin diagram results in an isomorphic quantum flag manifold, which is not denoted in the diagram. In particular, for the case of \(D_n\) and \(E_6\), colouring the second spinor node, and the first node, respectively, produces an isomorphic copy of the corresponding quantum flag manifold.

We present an explicit description of the canonical line modules (see Table 2) of the irreducible quantum flag manifolds using the approach of Theorem 4.12. All line modules are indexed by the negative integers, and hence are negative in the sense of Definition 2.7. The values coincide with their classical counterparts, see, for example, [31, § II.4]. This allows us to conclude in Theorem 4.12 that the Kähler structure of each irreducible quantum flag manifold is of Fano type.

Table 1 Irreducible Quantum Flag Manifolds: organised by series, with defining crossed node numbered according to [28, §11.4], CQGA-homogeneous space symbol and name
Table 2 Irreducible Quantum Flag Manifolds: CQGA-homogeneous space symbol, corresponding Heckenberger–Kolb calculus complex dimension, and the space of top holomorphic forms identified as a line module

Remark C.1

By a theorem of Atiyah, a 2m-dimensional compact Hermitian manifold is spin if and only if its canonical line module \(\Omega ^{(m,0)}\) admits a holomorphic square root [2, Proposition 3.2]. Thus from Table 2, we see that the classical Grassmannians \(\textrm{Gr}_{s,n+1}\), and the classical Lagrangian Grassmannians \(\textbf{L}_n\), are spin for all \(n \in 2{\mathbb {Z}}_{> 0} + 1\). Moreover, the even quadrics \(\textbf{Q}_{2n}\), and the spinor varieties \(\textbf{S}_n\), are spin, for all \(n \in {\mathbb {Z}}_{> 0}\). For the exceptional cases, both the Cayley plane and the Freudenthal variety are spin. Atiyah’s theorem suggests a definition for noncommutative Hermitian spin structures with a substantial ready-made family of noncommutative examples.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz García, F., Krutov, A.O., Ó Buachalla, R. et al. Positive line modules over the irreducible quantum flag manifolds. Lett Math Phys 112, 123 (2022). https://doi.org/10.1007/s11005-022-01619-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-022-01619-x

Keywords

Mathematics Subject Classification

Navigation