Skip to main content
Log in

A quantum shuffle approach to quantum determinants

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Let \(\bigwedge _\sigma V=\bigoplus _{k\ge 0}\bigwedge _\sigma ^kV\) be the quantum exterior algebra associated with a finite-dimensional braided vector space \((V,\sigma )\). For an associative algebra \(\mathfrak {A}\), we consider the convolution product on the graded space \(\bigoplus _{k\ge 0}\textrm{Hom}_{\mathbb {C}}\big (\bigwedge _\sigma ^kV,\bigwedge _\sigma ^kV\otimes \mathfrak {A}\big )\). Using this product, we define a notion of quantum minor determinant of a map from V to \(V\otimes \mathfrak {A}\), which coincides with the classical one in the case that \(\mathfrak {A}\) is the FRT algebra corresponding to \(U_q(\mathfrak {sl}_N)\). We establish a quantum Laplace expansion formula and multiplicative formula for these determinants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andruskiewitsch, N., Schneider, H.-J.: Hopf, Pointed, algebras, New directions in Hopf algebras, 1–68, Math. Sci. Res. Inst. Publ., 43,: Cambridge Univ. Press, Cambridge (2002)

  2. Andruskiewitsch, N., Schneider, H.-J.: On the classification of finite-dimensional pointed Hopf algebras. Ann. Math. 171, 375–417 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Drinfeld, V.G.: Quantum Groups, pp. 798–820. Proc. Int. Cong. Math, Berkeley (1986)

  4. Faddeev, L.D., Reshetikhin, Y.N., Takhtajan, L.A.: Quantization of Lie Groups and Lie Algebras, Algebraic Analysis, vol. I, pp. 129–139. Academic Press, Boston (1988)

    Google Scholar 

  5. Faddeev, L.D., Sklyanin, E.K.: The quantum-mechancial approach to completely integrable models of field theory. Dokl. Akad. Nauk SSSR 243, 1430–1433 (1978). (Russian)

    Google Scholar 

  6. Faddeev, L.D., Sklyanin, E.K., Takhtajan, L.A.: The quantum inverse problem I. Theor. Math. Phys. 40, 194–220 (1979). (Russian)

    MathSciNet  Google Scholar 

  7. Faddeev, L.D., Takhtajan, L.A.: The quantum inverse problem method and the XYZ Heisenberg model. Uspekhi Mat. Nauk 34(5), 13–63 (1979). (Russian)

    MathSciNet  Google Scholar 

  8. Farinati, M.A., García, G.A.: Quantum function algebras from finite-dimensional Nichols algebras. J. Noncommut. Geom. 14, 879–911 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Flores de Chela, D., Green, J.A.: Quantum symmetric algebras II. J. Algebra 269, 610–631 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Geck,M., Pfeiffer,G.: Characters of finite Coxeter groups and Iwahori-Hecke algebras, London Math. Soc. Monographs, New Series 21. Oxford University Press, New York (2000)

  11. Gurevich, D.I.: Algebraic aspects of the quantum Yang-Baxter equation. Algebra i Analiz 2, 119–148 (1990). (Russian)

    MathSciNet  MATH  Google Scholar 

  12. Gurevich, D.I.: Algebraic aspects of the quantumYang-Baxter equation. Transl. Leningrad Math. J. 2, 801–828 (1991). (Russian)

    MATH  Google Scholar 

  13. Gurevich, D.I., Saponov, P.: Determinants in quantum matrix algebras and integrable systems. Theor. Math. Phys. 207, 626–639 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  14. Heckenberger, I.: The Weyl groupoid of a Nichols algebra of diagonal type. Invent. Math. 164, 175–188 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Isaev, A.P., Opievetsky, O.V.: Braids shuffles and symmetrizers. J. Phys. A: Math. Theor. 42, 304017 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Isaev, A., Opievetsky, O., Pyatov, P.: On quantum matrix algebras satisfying the Cayley–Hamilton–Newton identities. J. Phys. A: Math. Gen. 32, L115–L121 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Isaev, A., Opievetsky, O., Pyatov, P., Saponov, P.: Characteristic polynomials for quantum matrices, Supersymmetric and Quantum Symmetrics. Lecture Notes in Phys. Springer, New York (1997)

  18. Jimbo, M.: A \(q\)-difference analogue of \(U(\mathfrak{g} )\) and the Yang-Baxter equation. Lett. Math. Phys. 10, 63–69 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Jimbo, M.: A \(q\)-analogue of \(U(\mathfrak{gl} (N+1))\), Hecke algebra, and the Yang-Baxter equation. Lett. Math. Phys. 11, 63–69 (1985)

    Article  ADS  Google Scholar 

  20. Jing, N., Zhang, J.: Quantum pfaffians and hyper-pfaffians. Adv. Math. 265, 336–361 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kac, V., Cheung, P.: Quantum Calculus. Universitext, Springer, New York (2002)

  22. Manin, Yu.I.: Quantum groups and noncommutative geometry. Université de Montréal, Centre de Recherches Mathématiques, Montreal, QC (1988)

  23. Noumi, M., Umeda, T., Wakayama, M.: A quantum analogue of the Capelli identity and an elementary differential calculus on \(GL_q(n)\). Duke Math. J. 76, 567–594 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. Noumi, M., Yamada, H., Mimachi, K.: Finite dimensional representations of the quantum group \(GLq(n; \rm C)\) and the zonal spherical functions on \(U_q(n-1)\backslash U_q(n)\). Jpn. J. Math. 19, 31–80 (1993)

    Article  MATH  Google Scholar 

  25. Parshall,B., Wang,J.-P.: Quantum linear groups, Memoirs Amer. Math. Soc., 439, Amer. Math. Soc., Providence (1990)

  26. Reshetikhin, NYu., Takhtadzhyan, L.A., Faddeev, L.D.: Quantization of Lie groups and Lie algebras. Algebra i Analiz 1, 178–206 (1989). (Russian)

    MathSciNet  MATH  Google Scholar 

  27. Reshetikhin, NYu., Takhtadzhyan, L.A., Faddeev, L.D.: Quantization of Lie groups and Lie algebras. Transl. Leningrad Math. J. 1, 193–225 (1990). (Russian)

    MathSciNet  MATH  Google Scholar 

  28. Rosso, M.: Quantum groups and quantum shuffles. Invent. Math. 133, 399–416 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Sklyanin, E.K.: The quantum version of the inverse scattering method. Zap. Nauchn. Sem. LOMI 95, 55–128 (1980)

    MATH  Google Scholar 

  30. Takeuchi, M.: A short course on quantum matrices, Notes taken by Bernd Strüber. Math. Sci. Res. Inst. Publ., 43, New directions in Hopf algebras, pp. 383–435, Cambridge Univ. Press, Cambridge (2002)

  31. Woronowicz, S.L.: Differential calculus on compact matrix pseudogroups (quantum groups). Commun. Math. Phys. 122, 125–170 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Zhang, J.J.: The quantum Cayley–Hamilton theorem. J. Pure Appl. Algebra 129, 101–109 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank Gastón Andrés García for pointing out to me the reference [8] in an earlier version of the manuscript. I am grateful to the referees for their useful comments, especially for pointing out to me the works [13, 15, 16, 31]. I would also like to thank the editor for providing advice about some statements of the introduction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Run-Qiang Jian.

Additional information

To Professor Marc Rosso on the occasion of his 60th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jian, RQ. A quantum shuffle approach to quantum determinants. Lett Math Phys 112, 127 (2022). https://doi.org/10.1007/s11005-022-01615-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-022-01615-1

Keywords

Mathematics Subject Classification

Navigation