Skip to main content
Log in

Hadamard property of the in and out states for Dirac fields on asymptotically static spacetimes

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider massive Dirac equations on asymptotically static spacetimes with a Cauchy surface of bounded geometry. We prove that the associated quantized Dirac field admits in and out states, which are asymptotic vacuum states when some time coordinate tends to \({\mp }\infty \). We also show that the in/out states are Hadamard states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bär, C., Gauduchon, P., Moroianu, A.: Generalized cylinders in semi-Riemannian and spin geometry. Math. Z. 249, 545–580 (2005)

    Article  MathSciNet  Google Scholar 

  2. Choquet-Bruhat, Y., Cotsakis, Y.: Global hyperbolicity and completeness. J. Geom. Phys. 43, 345–350 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  3. Cheeger, J., Gromov, M.: Bounds on the von Neumann dimension of \(L^{2}\)-cohomology and the Gauss-Bonnet theorem for open manifolds. J. Differ. Geom. 21, 1–34 (1985)

    Article  Google Scholar 

  4. d’ Antoni, C., Hollands, S.: Nuclearity, local quasiequivalence and split property for Dirac quantum fields in curved spacetime. Commun. Math. Phys. 261, 133–159 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  5. Dereziński, J., Gérard, C.: Mathematics of Quantization and Quantum Fields, Cambridge Monographs in Mathematical Physics. Cambridge University Press, Cambridge (2013)

    Book  Google Scholar 

  6. Dimock, J.: Dirac quantum fields on a manifold. Trans. Am. Math Soc. 269, 133–147 (1982)

    Article  MathSciNet  Google Scholar 

  7. Dimock, J., Kay, B.S.: Classical wave operators and asymptotic quantum field operators on curved space-times. Annales de l’I.H.P. A 37(2), 93–114 (1982)

    MathSciNet  MATH  Google Scholar 

  8. Dimock, J., Kay, B.S.: Classical and quantum scattering theory for linear scalar fields on the Schwarzschild metric. I. Ann. Phys. 175(2), 366–426 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  9. Dimock, J., Kay, B.S.: Classical and quantum scattering theory for linear scalar fields on the Schwarzschild metric. II. J. Math. Phys. 27, 2520 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  10. Fewster, C.J., Verch, R.: Algebraic quantum field theory in curved spacetimes. In: Brunetti, R., Dappiaggi, C., Fredenhagen, K., Yngvason, J. (eds.) Advances in Algebraic Quantum Field Theory. Springer, Cham (2015)

    MATH  Google Scholar 

  11. Fulling, S.A., Narcowich, F.J., Wald, R.M.: Singularity structure of the two-point function in quantum field theory in curved spacetime. II. Ann. Phys. 136, 243–272 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  12. Gérard, C.: Microlocal analysis of quantum fields on curved spacetimes. In: ESI Lectures in Mathematics and Physics. EMS (2019)

  13. Gérard, C., Häfner, D., Wrochna, M.: The Unruh state for massless fermions on Kerr spacetime and its Hadamard property. arXiv:2008.10995 (2020)

  14. Gérard, C., Wrochna, M.: Hadamard property of the in and out states for Klein–Gordon fields on asymptotically static spacetimes. Ann. Henri Poincaré 18, 2715–2756 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  15. Gérard, C., Wrochna, M.: Construction of Hadamard states by pseudodifferential calculus. Commun. Math. Phys. 325, 713–755 (2014)

    Article  ADS  Google Scholar 

  16. Gérard, C., Oulghazi, 0, Wrochna, M.: Hadamard states for the Klein-Gordon equation on Lorentzian manifolds of bounded geometry. Commun. Math. Phys. 352, 519–583 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  17. Gérard, C., Stoskopf T.: Hadamard states for quantized Dirac fields on Lorentzian manifolds of bounded geometry. arXiv:2108.11630 (2021)

  18. Geroch, R.: Spinor structure of space-times in General Relativity. I. J. Math. Phys. 9, 1739 (1968)

    Article  ADS  MathSciNet  Google Scholar 

  19. Geroch, R.: Spinor structure of space-times in general relativity. II. J. Math. Phys. 11, 343 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  20. Hijazi, O.: A conformal lower bound for the smallest eigenvalue of the Dirac operator and Killing spinors. Commun. Math. Phys. 104, 151–162 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  21. Hollands, S.: The Hadamard condition for Dirac fields and adiabatic states on Robertson–Walker spacetimes. Commun. Math. Phys. 216, 635–661 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  22. Hollands, S., Wald, R.M.: Quantum fields in curved spacetime. In: Ashtekar, A., Berger B., Isenberg J., MacCallum M. (Ed.) General Relativity and Gravitation: A Centennial Perspective. Cambridge University Press, Cambridge (2015)

  23. Islam, O., Strohmaier, A.: On microlocalization and the construction of Feynman propagators for normally hyperbolic operators. arXiv:2012.09767 (2020)

  24. Köhler, M.: The stress-energy tensor of a locally supersymmetric quantum field on a curved space-time. Ph.D. thesis, Hamburg (1995)

  25. Isozaki, H.: QFT for scalar particles in external fields on Riemannian manifolds. Rev. Math. Phys. 13(6), 767–798 (2001)

    Article  MathSciNet  Google Scholar 

  26. Kay, B.S., Wald, R.M.: Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasi-free states on spacetimes with a bifurcate Killing horizon. Phys. Rep. 207, 49 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  27. Kordyukov, Y.: \(L^{p}\)-theory of elliptic differential operators on manifolds of bounded geometry. Acta Appl. Math. 23, 223–260 (1991)

    Article  MathSciNet  Google Scholar 

  28. Kosmann, Y.: Dérivées de Lie des spineurs. Ann. di Mat. Pura ed Appl. 91, 317–395 (1971)

    Article  MathSciNet  Google Scholar 

  29. Kratzert, K.: Singularity structure of the two point function of the free Dirac field on a globally hyperbolic spacetime. Ann. Phys. 8, 475–498 (2000)

    Article  MathSciNet  Google Scholar 

  30. Lawson, H.B., Jr., Michelsohn, M.: Spin Geometry. Princeton Mathematical Series, vol. 38. Princeton University Press, Princeton (1989)

    MATH  Google Scholar 

  31. Mühlhoff, R.: Cauchy problem and Green’s functions for first order differential operators and algebraic quantization. J. Math. Phys. 52, 022303 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  32. Milnor, J.: Spin structures on manifolds. Ens. Math. 9, 198–203 (1963)

    MathSciNet  MATH  Google Scholar 

  33. Nakahara, M.: Geometry, Topology and Physics. Graduate Student Series in Physics. IOP Publishing, Bristol (1990)

    MATH  Google Scholar 

  34. Radzikowski, M.: Micro-local approach to the Hadamard condition in quantum field theory on curved space-time. Commun. Math. Phys. 179, 529–553 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  35. Roe, J.: An index theorem on open manifolds I. J. Differ. Geom. 27, 87–113 (1988)

    MathSciNet  MATH  Google Scholar 

  36. Ruijsenaars, S.N.M.: Charged particles in external fields I. Classical theory. J. Math. Phys. 18(4), 720–737 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  37. Sahlmann, H., Verch, R.: Microlocal spectrum condition and Hadamard form for vector-valued quantum fields in curved spacetime. Rev. Math. Phys. 13(10), 1203–1246 (2001)

    Article  MathSciNet  Google Scholar 

  38. Sahlmann, H., Verch, R.: Passivity and microlocal spectrum condition. Commun. Math. Phys. 214, 705–731 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  39. Sanders, K.: The locally covariant Dirac field. Rev. Math. Phys. 22, 381–430 (2010)

    Article  MathSciNet  Google Scholar 

  40. Schmid, J., Griesemer, M.: Kato theorem on the integration of non-autonomous linear evolution equations. Math. Phys. Anal. Geom. 17, 265–271 (2014)

    Article  MathSciNet  Google Scholar 

  41. Seiler, R.: Quantum theory of particles with spin zero and one half in external fields. Commun. Math. Phys. 25, 127–151 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  42. Shubin, M.A.: Spectral theory of elliptic operators on non-compact manifolds. Astérisque 207, 37–108 (1992)

    Google Scholar 

  43. Trautman, A.: Connections and the Dirac operators on spinor bundles. J. Geom. Phys. 58, 238–252 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  44. Wald, R.M.: Existence of the S-matrix in quantum field theory in curved space-time. Ann. Phys. (N. Y.) 118, 490–510 (1979)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Gérard.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gérard, C., Stoskopf, T. Hadamard property of the in and out states for Dirac fields on asymptotically static spacetimes. Lett Math Phys 112, 63 (2022). https://doi.org/10.1007/s11005-022-01556-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-022-01556-9

Keywords

Mathematics Subject Classification

Navigation