Skip to main content
Log in

BKP hierarchy, affine coordinates, and a formula for connected bosonic n-point functions

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We derive a formula for the connected n-point functions of a tau-function of the BKP hierarchy in terms of its affine coordinates. This is a BKP-analogue of a formula for KP tau-functions proved by Zhou (Emergent geometry and mirror symmetry of a point, 2015. arXiv:1507.01679). Moreover, we prove a simple relation between the KP-affine coordinates of a tau-function \(\tau (\varvec{t})\) of the KdV hierarchy and the BKP-affine coordinates of \(\tau (\varvec{t}/2)\). As applications, we present a new algorithm to compute the free energies of the Witten–Kontsevich tau-function and the Brézin–Gross–Witten tau-function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability statement

All data generated or analyzed during this study are included in this published article.

References

  1. Alexandrov, A.: Cut-and-join description of generalized Brézin–Gross–Witten model. Adv. Theor. Math. Phys. 22(6), 1347–1399 (2018)

    Article  MathSciNet  Google Scholar 

  2. Alexandrov, A.: Intersection numbers on \(\overline{\cal{M}}_{g, n}\) and BKP hierarchy. J. High Energy Phys. 2021(9), 013 (2021)

    Article  MathSciNet  Google Scholar 

  3. Alexandrov, A.: KdV solves BKP. Proc. Natl. Acad. Sci. 118(25), e2101917118 (2021)

    Article  MathSciNet  Google Scholar 

  4. Alexandrov, A.: Generalized Brézin–Gross–Witten tau-function as a hypergeometric solution of the BKP hierarchy (2021). arXiv preprint arXiv:2103.17117

  5. Aganagic, M., Dijkgraaf, R., Klemm, A., Mariño, M., Vafa, C.: Topological strings and integrable hierarchies. Commun. Math. Phys. 261(2), 451–516 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  6. Balogh, F., Harnad, J.: Tau Functions and Their Applications. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2021)

    MATH  Google Scholar 

  7. Balogh, F., Yang, D.: Geometric interpretation of Zhou’s explicit formula for the Witten–Kontsevich tau function. Lett. Math. Phys. 107(10), 1837–1857 (2017)

  8. Brézin, E., Gross, D.J.: The external field problem in the large \(N\) limit of QCD. Phys. Lett. B 97(1), 120–124 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  9. Cartan, E.: The Theory of Spinors. Dover Publications, Mineola (1981)

    MATH  Google Scholar 

  10. Date, E., Jimbo, M., Kashiwara, M., Miwa, T.: Transformation groups for soliton equations IV. A new hierarchy of soliton equations of KP-type. Physica D 4(3), 343–365 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  11. Date, E., Jimbo, M., Miwa, T.: Solitons: Differential Equations, Symmetries and Infinite Dimensional Algebras. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  12. Deligne, P., Mumford, D.: The irreducibility of the space of curves of given genus. Publications Mathématiques de l’IHÉS 36(1), 75–109 (1969)

  13. Deng, F., Zhou, J.: On fermionic representation of the framed topological vertex. J. High Energy Phys. 2015(12), 1–22 (2011)

    Article  MathSciNet  Google Scholar 

  14. Di Francesco, P., Itzykson, C., Zuber, J.B.: Polynomial averages in the Kontsevich model. Commun. Math. Phys. 151(1), 193–219 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  15. Dijkgraaf, R., Verlinde, H., Verlinde, E.: Loop equations and Virasoro constraints in nonperturbative two-dimensional quantum gravity. Nucl. Phys. B 348(3), 435–456 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  16. Fukuma, M., Kawai, H., Nakayama, R.: Continuum Schwinger-Dyson equations and universal structures in two-dimensional quantum gravity. Int. J. Mod. Phys. A 6(08), 1385–1406 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  17. Gross, D.J., Newman, M.J.: Unitary and hermitian matrices in an external field II: the Kontsevich model and continuum Virasoro constraints. Nucl. Phys. B 380(1–2), 168–180 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  18. Gross, D.J., Witten, E.: Possible third-order phase transition in the large-\(N\) lattice gauge theory. Phys. Rev. D Part. Fields 21(2), 446 (1980)

    Article  ADS  Google Scholar 

  19. Hoffman, P.N., Humphreys, J.F.: Projective Representations of the Symmetric Groups: Q-functions and Shifted Tableaux. Oxford Mathematical Monographs. Clarendon Press, Oxford (1992)

    MATH  Google Scholar 

  20. Jimbo, M., Miwa, T.: Solitons and infinite-dimensional Lie algebras. Publ. Res. Inst. Math. Sci. 1983(19), 943–1001 (1983)

    Article  MathSciNet  Google Scholar 

  21. Józefiak, T.: Symmetric functions in the Kontsevich–Witten intersection theory of the moduli space of curves. Lett. Math. Phys. 33(4), 347–351 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  22. Kac, V., van de Leur, J.: Polynomial tau-functions of BKP and DKP hierarchies. J. Math. Phys. 60(7), 071702 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  23. Knudsen, F.F.: The projectivity of the moduli space of stable curves, II: the stacks \(M_{g, n}\). Math. Scand. 52(2), 161–199 (1983)

    Article  MathSciNet  Google Scholar 

  24. Kontsevich, M.: Intersection theory on the moduli space of curves and the matrix Airy function. Commun. Math. Phys. 147(1), 1–23 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  25. Li, S.H., Wang, Z.L.: BKP hierarchy and Pfaffian point process. Nucl. Phys. B 939, 447–464 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  26. Liu, K., Xu, H.: The n-point functions for intersection numbers on moduli spaces of curves. Adv. Theor. Math. Phys. 15(5), 1201–1236 (2007)

    Article  MathSciNet  Google Scholar 

  27. Liu, X., Yang, C.: Schur Q-polynomials and Kontsevich–Witten tau function (2021). arXiv preprint arXiv:2103.14318

  28. Liu, X., Yang, C.: Q-Polynomial expansion for Brézin–Gross–Witten tau-function. Adv. Math. 404, 108456 (2022)

    Article  Google Scholar 

  29. MacDonald, I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Clarendon Press, Oxford (1995)

    MATH  Google Scholar 

  30. Mironov, A., Morozov, A.: Superintegrability of Kontsevich matrix model. Eur. Phys. J. C 81(3), 1–11 (2021)

    Article  Google Scholar 

  31. Mironov, A., Morozov, A., Natanzon, S.: Cut-and-join structure and integrability for spin Hurwitz numbers. Eur. Phys. J. C 80(2), 1–16 (2020)

    Article  Google Scholar 

  32. Mironov, A., Morozov, A., Semenoff, G.: Unitary matrix integrals in the framework of generalized Kontsevich model. I. Brézin–Gross–Witten model. Int. J. Mod. Phys. A 11(28), 5031–5080 (1996)

    Article  ADS  Google Scholar 

  33. Norbury, P.: A new cohomology class on the moduli space of curves (2017). arXiv preprint arXiv:1712.03662

  34. Orlov, A.Y.: Hypergeometric functions related to Schur Q-polynomials and BKP equation. Theor. Math. Phys. 137(2), 1574–1589 (2003)

    Article  Google Scholar 

  35. Pandharipande, R., Pixton, A., Zvonkine, D.: Relations on \(\overline{\cal{M}}_{g, n}\) via \(3\)-spin structures. J. Am. Math. Soc. 28, 279–309 (2015)

    Article  MathSciNet  Google Scholar 

  36. Sato, M.: Soliton equations as dynamical systems on an infinite dimensional Grassmann manifold. RIMS Kokyuroku 439, 30–46 (1981)

    Google Scholar 

  37. Schur, J.: Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen. Journal Für Die Reine Und Angewandte Mathematik 1911(139), 155–250 (1911)

    Article  Google Scholar 

  38. Segal, G., Wilson, G.: Loop groups and equations of KdV type. Publications Mathématiques de l’IHÉS 61(1), 5–65 (1985)

  39. Tu, M.H.: On the BKP hierarchy: additional symmetries, Fay identity and Adler–Shiota–van Moerbeke formula. Lett. Math. Phys. 81(2), 93–105 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  40. van de Leur, J.: The Adler–Shiota–van Moerbeke formula for the BKP hierarchy. J. Math. Phys. 36, 4940–4951 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  41. Wang, Z.: On affine coordinates of the tau-function for open intersection numbers. Nucl. Phys. B 972, 115575 (2021)

    Article  MathSciNet  Google Scholar 

  42. Wang, Z., Zhou, J.: Topological 1D gravity, KP hierarchy, and orbifold Euler characteristics of \(\overline{\cal{M}}_{g,n}\) (2021). arXiv preprint arXiv:2109.03394

  43. Witten, E.: Two-dimensional gravity and intersection theory on moduli space. Surv. Differ. Geom. 1(1), 243–310 (1990)

    Article  Google Scholar 

  44. You, Y.: Polynomial solutions of the BKP hierarchy and projective representations of symmetric groups. Infinite-dimensional Lie algebras and groups, Luminy-Marseille. Adv. Ser. Math. Phys. 7, 449–464 (1989)

    MATH  Google Scholar 

  45. Zhou, J.: Explicit formula for Witten–Kontsevich tau-function (2013). arXiv preprint arXiv:1306.5429

  46. Zhou, J.: Emergent geometry and mirror symmetry of a point (2015). arXiv preprint arXiv:1507.01679

  47. Zhou, J.: K-Theory of Hilbert schemes as a formal quantum field theory (2018). arXiv preprint arXiv:1803.06080

  48. Zhou, J.: Hermitian one-matrix model and KP hierarchy (2018). arXiv preprint arXiv:1809.07951

  49. Zhou, J.: Grothendieck’s Dessins d’Enfants in a web of dualities (2019). arXiv preprint arXiv:1905.10773

Download references

Acknowledgements

We thank the anonymous referees for suggestions. Z.W. thanks Professor Jian Zhou for helpful discussions and Professor Huijun Fan for encouragement. C.Y. thanks Professor Xiaobo Liu for patient guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyuan Wang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Yang, C. BKP hierarchy, affine coordinates, and a formula for connected bosonic n-point functions. Lett Math Phys 112, 62 (2022). https://doi.org/10.1007/s11005-022-01554-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-022-01554-x

Keywords

Mathematics Subject Classification

Navigation