Skip to main content
Log in

Stochastic symplectic ice

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we construct solvable ice models (six-vertex models) with stochastic weights and U-turn right boundary, which we term “stochastic symplectic ice”. The models consist of alternating rows of two types of vertices. The probabilistic interpretation of the models leads to novel interacting particle systems where particles alternately jump to the right and then to the left. Two colored versions of the models and related stochastic dynamics are also introduced. Using the Yang–Baxter equations, we establish functional equations and recursive relations for the partition functions of these models. In particular, the recursive relations satisfied by the partition function of one of the colored models are closely related to Demazure–Lusztig operators of type C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Aggarwal, A.: Convergence of the stochastic six-vertex model to the ASEP: stochastic six-vertex model and ASEP. Math. Phys. Anal. Geom. 20(2), 3–20 (2017). https://doi.org/10.1007/s11040-016-9235-8

    Article  MathSciNet  MATH  Google Scholar 

  2. Barraquand, G., Borodin, A., Corwin, I., Wheeler, M.: Stochastic six-vertex model in a half-quadrant and half-line open asymmetric simple exclusion process. Duke Math. J. 167(13), 2457–2529 (2018). https://doi.org/10.1215/00127094-2018-0019

    Article  MathSciNet  MATH  Google Scholar 

  3. Baxter, R.J.: The inversion relation method for some two-dimensional exactly solved models in lattice statistics. J. Stat. Phys. 28(1), 1–41 (1982). https://doi.org/10.1007/BF01011621

    Article  ADS  MathSciNet  Google Scholar 

  4. Baxter, R.J.: One-dimensional anisotropic Heisenberg chain. Ann. Phys. 70, 323–337 (1972). https://doi.org/10.1016/0003-4916(72)90270-9

    Article  ADS  MathSciNet  Google Scholar 

  5. Baxter, R.J.: Exactly Solved Models in Statistical Mechanics, p. 486. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London (1982)

  6. Belavin, A.A., Polyakov, A.M., Zamolodchikov, A.B.: Infinite conformal symmetry of critical fluctuations in two dimensions. J. Stat. Phys. 34(5–6), 763–774 (1984). https://doi.org/10.1007/BF01009438

    Article  ADS  MathSciNet  Google Scholar 

  7. Borodin, A.: On a family of symmetric rational functions. Adv. Math. 306, 973–1018 (2017). https://doi.org/10.1016/j.aim.2016.10.040

    Article  MathSciNet  MATH  Google Scholar 

  8. Borodin, A.: Stochastic higher spin six vertex model and Macdonald measures. J. Math. Phys. 59(2), 023301–17 (2018). https://doi.org/10.1063/1.5000046

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Borodin, A., Petrov, L.: Integrable probability: stochastic vertex models and symmetric functions. In: Stochastic Processes and Random Matrices, pp. 26–131. Oxford University Press, Oxford (2017)

  10. Borodin, A., Wheeler, M.: Coloured stochastic vertex models and their spectral theory. arXiv preprint arXiv:1808.01866 (2018)

  11. Borodin, A., Bufetov, A., Wheeler, M.: Between the stochastic six vertex model and Hall–Littlewood processes. arXiv preprint arXiv:1611.09486 (2016a)

  12. Borodin, A., Corwin, I., Gorin, V.: Stochastic six-vertex model. Duke Math. J. 165(3), 563–624 (2016). https://doi.org/10.1215/00127094-3166843

    Article  MathSciNet  MATH  Google Scholar 

  13. Brubaker, B., Schultz, A.: The six-vertex model and deformations of the Weyl character formula. J. Algebr. Combin. 42(4), 917–958 (2015). https://doi.org/10.1007/s10801-015-0611-4

    Article  MathSciNet  MATH  Google Scholar 

  14. Brubaker, B., Schultz, A.: On Hamiltonians for six-vertex models. J. Combin. Theory Ser. A 155, 100–121 (2018). https://doi.org/10.1016/j.jcta.2017.10.007

    Article  MathSciNet  MATH  Google Scholar 

  15. Brubaker, B., Bump, D., Friedberg, S.: Schur polynomials and the Yang–Baxter equation. Commun. Math. Phys. 308(2), 281–301 (2011). https://doi.org/10.1007/s00220-011-1345-3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Brubaker, B., Bump, D., Licata, A.: Whittaker functions and Demazure operators. J. Number Theory 146, 41–68 (2015). https://doi.org/10.1016/j.jnt.2014.01.001

    Article  MathSciNet  MATH  Google Scholar 

  17. Brubaker, B., Bump, D., Chinta, G., Friedberg, S., Gunnells, P.E.: Metaplectic ice. In: Multiple Dirichlet Series, L-functions and Automorphic Forms. Progress in Mathematics, vol. 300, pp. 65–92. Birkhäuser/Springer, New York (2012a). https://doi.org/10.1007/978-0-8176-8334-4_3

  18. Brubaker, B., Bump, D., Chinta, G., Gunnells, P.E.: Metaplectic Whittaker functions and crystals of type B. In: Multiple Dirichlet Series, L-Functions and Automorphic Forms. Progress in Mathematics, vol. 300, pp. 93–118. Birkhäuser/Springer, New York (2012b). https://doi.org/10.1007/978-0-8176-8334-4_4

  19. Brubaker, B., Buciumas, V., Bump, D., Gustafsson, H.: Colored vertex models and Iwahori Whittaker functions. arXiv preprint arXiv:1906.04140 (2019a)

  20. Brubaker, B., Buciumas, V., Bump, D., Gray, N.: A Yang–Baxter equation for metaplectic ice. Commun. Number Theory Phys. 13(1), 101–148 (2019). https://doi.org/10.4310/CNTP.2019.v13.n1.a4

    Article  MathSciNet  MATH  Google Scholar 

  21. Brubaker, B., Buciumas, V., Bump, D., Gustafsson, H.: Metaplectic Iwahori Whittaker functions and supersymmetric lattice models. arXiv preprint arXiv:2012.15778 (2020a)

  22. Brubaker, B., Buciumas, V., Bump, D., Gustafsson, H.P.A.: Vertex operators, solvable lattice models and metaplectic Whittaker functions. Commun. Math. Phys. 380(2), 535–579 (2020). https://doi.org/10.1007/s00220-020-03842-w

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Brubaker, B., Buciumas, V., Bump, D., Gustafsson, H.P.A.: Colored five-vertex models and Demazure atoms. J. Combin. Theory Ser. A 178, 105354–48 (2021). https://doi.org/10.1016/j.jcta.2020.105354

    Article  MathSciNet  MATH  Google Scholar 

  24. Buciumas, V., Scrimshaw, T.: Quasi-solvable lattice models for \(\rm Sp\it _{2n}\) and \(\rm SO\it _{2n+ 1}\) Demazure atoms and characters. arXiv preprint arXiv:2101.08907 (2021)

  25. Buciumas, V., Scrimshaw, T., Weber, K.: Colored five-vertex models and Lascoux polynomials and atoms. J. Lond. Math. Soc. (2) 102(3), 1047–1066 (2020). https://doi.org/10.1112/jlms.12347

    Article  MathSciNet  MATH  Google Scholar 

  26. Cantini, L., de Gier, J., Wheeler, M.: Matrix product formula for Macdonald polynomials. J. Phys. A 48(38), 384001–25 (2015). https://doi.org/10.1088/1751-8113/48/38/384001

    Article  MathSciNet  MATH  Google Scholar 

  27. Chinta, G., Gunnells, P.E., Puskás, A.: Metaplectic Demazure operators and Whittaker functions. Indiana Univ. Math. J. 66(3), 1045–1064 (2017). https://doi.org/10.1512/iumj.2017.66.6068

    Article  MathSciNet  MATH  Google Scholar 

  28. Corwin, I., Petrov, L.: Stochastic higher spin vertex models on the line. Commun. Math. Phys. 343(2), 651–700 (2016). https://doi.org/10.1007/s00220-015-2479-5

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Di Francesco, P., Mathieu, P., Sénéchal, D.: Conformal Field Theory. Graduate Texts in Contemporary Physics, p. 890. Springer, New York (1997). https://doi.org/10.1007/978-1-4612-2256-9

    Book  MATH  Google Scholar 

  30. Drinfel’d, V.G.: Quantum groups. In: Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, California, 1986), pp. 798–820. American Mathematical Society, Providence (1987)

  31. Foda, O., Wheeler, M.: Colour-independent partition functions in coloured vertex models. Nucl. Phys. B 871(2), 330–361 (2013). https://doi.org/10.1016/j.nuclphysb.2013.02.015

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Gray, N.: Metaplectic ice for Cartan type C. arXiv preprint arXiv:1709.04971 (2017)

  33. Hamel, A.M., King, R.C.: Symplectic shifted tableaux and deformations of Weyl’s denominator formula for \({\rm sp}(2n)\). J. Algebr. Combin. 16(3), 269–3002003 (2002). https://doi.org/10.1023/A:1021804505786

    Article  MathSciNet  MATH  Google Scholar 

  34. Hamel, A.M., King, R.C.: U-turn alternating sign matrices, symplectic shifted tableaux and their weighted enumeration. J. Algebr. Combin. 21(4), 395–421 (2005). https://doi.org/10.1007/s10801-005-3019-8

    Article  MathSciNet  MATH  Google Scholar 

  35. Ivanov, D.: Symplectic ice. In: Multiple Dirichlet Series, L-Functions and Automorphic Forms. Progress in Mathematics, vol. 300, pp. 205–222. Birkhäuser/Springer, New York (2012). https://doi.org/10.1007/978-0-8176-8334-4_10

  36. Jimbo, M.: A \(q\)-difference analogue of \(U(g)\) and the Yang–Baxter equation. Lett. Math. Phys. 10(1), 63–69 (1985). https://doi.org/10.1007/BF00704588

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Kuniba, A., Mangazeev, V.V., Maruyama, S., Okado, M.: Stochastic \(R\) matrix for \(U_{q}(A_{n}^{(1)})\). Nucl. Phys. B 913, 248–277 (2016). https://doi.org/10.1016/j.nuclphysb.2016.09.016

    Article  ADS  MATH  Google Scholar 

  38. Kuperberg, G.: Another proof of the alternating-sign matrix conjecture. Int. Math. Res. Notices 3, 139–150 (1996). https://doi.org/10.1155/S1073792896000128

    Article  MathSciNet  MATH  Google Scholar 

  39. Kuperberg, G.: Symmetry classes of alternating-sign matrices under one roof. Ann. Math. (2) 156(3), 835–866 (2002). https://doi.org/10.2307/3597283

    Article  MathSciNet  MATH  Google Scholar 

  40. Motegi, K.: Two point functions for the six vertex model with reflecting end. arXiv preprint arXiv:1006.4692 (2010)

  41. Motegi, K.: A note on a one-point boundary correlation function for the six-vertex model with reflecting end. Rep. Math. Phys. 67(1), 87–95 (2011). https://doi.org/10.1016/S0034-4877(11)80012-1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Motegi, K.: Dual wavefunction of the symplectic ice. Rep. Math. Phys. 80(3), 391–414 (2017). https://doi.org/10.1016/S0034-4877(18)30009-0

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Motegi, K.: Izergin-Korepin analysis on the wavefunctions of the \(U_q({\rm sl}_2)\) six-vertex model with reflecting end. Ann. Inst. Henri Poincaré D 7(2), 165–202 (2020). https://doi.org/10.4171/AIHPD/83

    Article  MathSciNet  MATH  Google Scholar 

  44. Motegi, K., Sakai, K., Watanabe, S.: Quantum inverse scattering method and generalizations of symplectic Schur functions and Whittaker functions. J. Geom. Phys. 149, 103571–32 (2020). https://doi.org/10.1016/j.geomphys.2019.103571

    Article  MathSciNet  MATH  Google Scholar 

  45. Orr, D., Petrov, L.: Stochastic higher spin six vertex model and \(q\)-TASEPs. Adv. Math. 317, 473–525 (2017). https://doi.org/10.1016/j.aim.2017.07.003

    Article  MathSciNet  MATH  Google Scholar 

  46. Puskás, A.: Whittaker functions on metaplectic covers of \(\rm GL\it (r)\). arXiv preprint arXiv:1605.05400 (2016)

  47. Sklyanin, E.K.: Boundary conditions for integrable quantum systems. J. Phys. A 21(10), 2375–2389 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  48. Tsuchiya, O.: Determinant formula for the six-vertex model with reflecting end. J. Math. Phys. 39(11), 5946–5951 (1998). https://doi.org/10.1063/1.532606

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Wheeler, M., Zinn-Justin, P.: Littlewood-Richardson coefficients for Grothendieck polynomials from integrability. J. Reine Angew. Math. 757, 159–195 (2019). https://doi.org/10.1515/crelle-2017-0033

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author wishes to thank Daniel Bump for his encouragement and many helpful conversations. The author thanks Valentin Buciumas, Nathan Gray, Slava Naprienko, and Travis Scrimshaw for their helpful comments, and Ben Brubaker for his help. The author thanks Kohei Motegi for bringing the reference [43] to his attention. Additionally, the author thanks the anonymous referees for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenyang Zhong.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, C. Stochastic symplectic ice. Lett Math Phys 112, 55 (2022). https://doi.org/10.1007/s11005-022-01547-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-022-01547-w

Keywords

Navigation