In this section, we specialize the parameters in the determinant formula in the same way as in the previous section. We show that with this specialization of the variables, the partition function can be written as a determinant of Wilson polynomials, and finally we use this together with the results from the previous section to give a formula for the number of states of the model.
Moments and orthogonal polynomials
We start by rewriting the determinant formula of the partition function (4). Let \(x_i=\lambda _i-\gamma \) and \(y_j=\mu _j\). In the previous section, we let \(\lambda _i\rightarrow \gamma \) and \(\mu _i\rightarrow 0\), which corresponds to letting \(x_i\rightarrow 0\) and \(y_i\rightarrow 0\). For \(1\le i \le n\), multiply column i of the determinant by \(f(2x_i)\) and for \(1\le j\le m\), multiply row j of the determinant by \(f(2y_j)\). Then specify \(\gamma =4\pi \mathrm {i}/3\). By row operations on the lower part of the determinant, we can then rewrite the partition function as
$$\begin{aligned}&Z_{n,m}(x_1 + \gamma , \dots , x_n + \gamma , y_1, \dots , y_m)\nonumber \\&\quad =\varphi ^{n-m}e^{\left( \left( {\begin{array}{c}m\\ 2\end{array}}\right) -nm\right) \gamma }f(\gamma )^m\dfrac{\prod _{i=1}^{m} \left[ e^{y_i+\zeta } f(y_i-\zeta )\right] \prod _{i=1}^n f(2x_i+2\gamma )}{\prod _{i=1}^n f(2x_i)\prod _{j=1}^m f(2y_j)}\nonumber \\&\qquad \times \frac{\prod _{i=1}^n\prod _{j=1}^{m} \left[ f(y_j+(x_i+\gamma ))f(y_j-(x_i+\gamma ))\right] }{\prod _{1\le i<j\le m}\left[ f(y_j+ y_i)f(y_j- y_i)\right] \prod _{1\le i<j\le n}\left[ f(x_i+ x_j)f(x_i- x_j)\right] }\nonumber \\&\qquad \times \det _{1\le i,j\le n} \tilde{M}, \end{aligned}$$
(14)
where
$$\begin{aligned} \tilde{M}_{ij}= {\left\{ \begin{array}{ll} g(x_j, y_i), &{}\quad \text { for } 1\le i \le m,\\ f(2(n-i+1) x_j), &{}\quad \text { for } m+1\le i\le n, \end{array}\right. } \end{aligned}$$
with
$$\begin{aligned} g(x,y)=\frac{f(2x)f(2y)}{f(y+ (x+\gamma ))f(y- (x+\gamma ))f(y+(x+2\gamma ))f(y-(x+2\gamma ))}. \end{aligned}$$
It is apparent that \(f(x)=\sinh x\) and g(x, y) are odd functions. Furthermore, \(x=0\) is a zero of f(x), and \(x=0\) and \(y=0\) are zeroes of g(x, y). Hence, we can write the functions as \(f(x)=x \hat{f}(x^2)\) and \(g(x,y)=xy \hat{g}(x^2,y^2)\), where \(\hat{f}\) and \(\hat{g}\) are analytic at \(x=y=0\). The partition function (14) can thus be written:
$$\begin{aligned}&Z_{n,m}(x_1 + \gamma , \dots , x_n + \gamma , y_1, \dots , y_m)\\&\quad =2^{n-m}(n-m)!\ \varphi ^{n-m}e^{\left( \left( {\begin{array}{c}m\\ 2\end{array}}\right) -nm\right) \gamma }f(\gamma )^m \\&\qquad \times \frac{\prod _{i=1}^{m} \left[ e^{y_i+\zeta } f(y_i-\zeta )\right] \prod _{i=1}^n f(2x_i+2\gamma )}{\prod _{i=1}^n f(2x_i)\prod _{j=1}^m f(2y_j)} \\&\qquad \times \frac{\prod _{i=1}^n\prod _{j=1}^{m} \left[ f(y_j+(x_i+\gamma ))f(y_j-(x_i+\gamma ))\right] \prod _{j=1}^n x_j \prod _{k=1}^m y_k}{\prod _{1\le i<j\le m}\left[ f(y_j+ y_i)f(y_j- y_i)\right] \prod _{1\le i<j\le n}\left[ f(x_i+ x_j)f(x_i- x_j)\right] }\\&\qquad \times \det _{1\le i, j\le n}\hat{M}, \end{aligned}$$
where
$$\begin{aligned} \hat{M}_{ij}= {\left\{ \begin{array}{ll} \hat{g}(x_j^2, y_i^2), &{}\quad \text { for } 1\le i \le m,\\ \hat{f}((2(n-i+1) x_j)^2), &{}\quad \text { for } m+1\le i\le n. \end{array}\right. } \end{aligned}$$
Now regard \(x_i^2\) and \(y_j^2\) as our variables. Then in the limit where all \(x_i,y_j \rightarrow 0\), the determinant can be written in terms of partial derivatives. Subtract the first column from the second and divide by \(x^2_2-x^2_1\); then in the limit \(x_i\rightarrow 0\), this equals the first partial derivative. Similarly for the kth column, subtract the \((k-1)\)th-order Taylor series expansion of each entry around \(x_k^2=0\), which in the limit is a sum of the first \(k-1\) columns. Then divide by \(\prod _{i=1}^{k-1} (x_k^2-x_i^2)/k!\). By l’Hôpital’s rule, this limit equals the \((k-1)\)th partial derivative. A similar argument for the first m rows lets us write the entries as partial derivatives in \(y_i^2\) as well. The method is described in detail in [7]. Hence in the limit, the partition function equals
$$\begin{aligned}&Z_{n,m}(\gamma , \dots , \gamma , 0, \dots , 0)\\&\quad =\lim _{x_i, y_j \rightarrow 0} 2^{n-m}(n-m)!\ \varphi ^{n-m}e^{\left( \left( {\begin{array}{c}m\\ 2\end{array}}\right) -nm\right) \gamma }f(\gamma )^m \\&\qquad \times \frac{\prod _{i=1}^{m} \left[ e^{y_i+\zeta } f(y_i-\zeta )\right] \prod _{i=1}^n f(2x_i+2\gamma )}{\prod _{i=1}^n f(2x_i)\prod _{j=1}^m f(2y_j)}\\&\qquad \times \frac{\prod _{i=1}^n\prod _{j=1}^{m} \left[ f(y_j+(x_i+\gamma ))f(y_j-(x_i+\gamma ))\right] \prod _{j=1}^n x_j \prod _{i=1}^m y_i}{\prod _{1\le i<j\le m}\left[ f(y_j+ y_i)f(y_j- y_i)\right] \prod _{1\le i<j\le n}\left[ f(x_i+ x_j)f(x_i- x_j)\right] }\\&\qquad \times \dfrac{\prod _{1\le i< j\le n} (x_j^2-x_i^2)\prod _{1\le i < j\le m} (y_j^2-y_i^2)}{\prod _{i=1}^n (i-1)!\prod _{j=1}^m (j-1)!}\\&\qquad \times \det \begin{pmatrix} \hat{g}(x_1^2, y_1^2) &{}\quad \frac{\partial }{\partial x_2^2}\hat{g}(x_2^2, y_1^2) &{}\quad \cdots &{}\quad \frac{\partial ^{n-1}}{\partial x_n^{2(n-1)}}\hat{g}(x_n^2, y_1^2)\\ \frac{\partial }{\partial y_2^2}\hat{g}(x_1^2, y_2^2) &{}\quad \frac{\partial ^2}{\partial x_2^2 y_2^2}\hat{g}(x_2^2, y_2^2) &{}\quad \cdots &{}\quad \frac{\partial ^n}{\partial x_n^{2(n-1)}y_2^2}\hat{g}(x_n^2, y_2^2)\\ \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad \vdots \\ \frac{\partial ^{m-1}}{\partial y_m^{2(m-1)}} \hat{g}(x_1^2, y_m^2) &{}\quad \frac{\partial ^m}{\partial x_2^2 y_m^{2(m-1)}}\hat{g}(x_2^2, y_m^2) &{}\quad \cdots &{}\quad \frac{\partial ^{n+m-2}}{\partial x_n^{2(n-1)}y_m^{2(m-1)}}\hat{g}(x_n^2, y_m^2)\\ \hat{f}((2(n-m)x_1)^2) &{}\quad \frac{\partial }{\partial x_2^2}\hat{f}((2(n-m)x_2)^2) &{}\quad \cdots &{}\quad \frac{\partial ^{n-1}}{\partial x_n^{2(n-1)}}\hat{f}((2(n-m)x_n)^2)\\ \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad \vdots \\ \hat{f}((2 x_1)^2) &{}\quad \frac{\partial }{\partial x_2^2}\hat{f}((2 x_2)^2) &{}\quad \cdots &{}\quad \frac{\partial ^{n-1}}{\partial x_n^{2(n-1)}}\hat{f}((2 x_n)^2) \end{pmatrix}. \end{aligned}$$
To cancel the zeroes in the denominators, the prefactors can be simplified by
$$\begin{aligned}&\lim _{x_i,y_j\rightarrow 0}\left( \frac{\prod _{i=1}^n x_i \prod _{j=1}^m y_j }{\prod _{i=1}^n f(2x_i)\prod _{j=1}^m f(2y_j)}\right. \\&\qquad \times \left. \frac{\prod _{1\le i< j\le n} (x_j^2-x_i^2)\prod _{1\le i< j\le m} (y_j^2-y_i^2)}{\prod _{1\le i<j\le n}\left[ f(x_i+ x_j)f(x_i- x_j)\right] \prod _{1\le i<j\le m}\left[ f(y_j+ y_i)f(y_j- y_i)\right] }\right) \\&\quad =\frac{(-1)^{\left( {\begin{array}{c}n\\ 2\end{array}}\right) }}{2^{n^2+n+m^2+m}}. \end{aligned}$$
Moreover,
$$\begin{aligned} f(2l x) =4lx\left( 1+\frac{(2 lx)^2}{3!}+\frac{(2 lx)^4}{5!}+\cdots \right) , \end{aligned}$$
so
$$\begin{aligned} \hat{f}(x)=2\left( 1+\frac{x}{3!}+\frac{x^2}{5!}+\cdots \right) , \end{aligned}$$
and
$$\begin{aligned} \frac{\partial ^k}{\partial x^{2k}}\hat{f}((2 lx)^2)\vert _{x=0} = \frac{2(2 l)^{2k}k!}{(2k+1)!}. \end{aligned}$$
For \(\gamma =4\pi \mathrm {i}/3\),
$$\begin{aligned} g(x,y) =\frac{f(x-y)}{f(3x-3y)}-\frac{f(x+y)}{f(3x+3y)}. \end{aligned}$$
Following [14], we use Fourier transforms to see that
$$\begin{aligned} \frac{f(x)}{f(3x)}=\frac{1}{2\sqrt{3}}\int _{-\infty }^{\infty } e^{-\mathrm {i}xt}\frac{\sinh (\pi t/6)}{\sinh (\pi t /2)}\mathrm{d}t. \end{aligned}$$
From this, it follows that
$$\begin{aligned} \frac{f(x-y)}{f(3x-3y)}-\frac{f(x+y)}{f(3x+3y)}= \frac{2}{\sqrt{3}}\int _0^\infty \sin (xt) \sin (yt)\frac{\sinh (\pi t/6)}{\sinh (\pi t /2)}\mathrm{d}t. \end{aligned}$$
By Taylor expansion and Lebesgue’s dominated convergence theorem, we get
$$\begin{aligned} g(x,y) =xy\frac{2}{\sqrt{3}}\sum _{k,l=0}^\infty \left( \frac{(-1)^{k+l}x^{2k}y^{2l}}{(2k+1)!(2l+1)!}\int _0^\infty t^{2k+2l+2}\frac{\sinh (\pi t/6)}{\sinh (\pi t /2)}\mathrm{d}t\right) , \end{aligned}$$
for \(\vert x\vert ,\vert y\vert <\pi /3\), so
$$\begin{aligned} \hat{g}(x^2,y^2) =\frac{2}{\sqrt{3}} \sum _{k,l=0}^\infty \left( \frac{(-1)^{k+l}x^{2k}y^{2l}}{(2k+1)!(2l+1)!}\int _0^\infty t^{2k+2l+2}\frac{\sinh (\pi t/6)}{\sinh (\pi t /2)}\mathrm{d}t\right) . \end{aligned}$$
Hence,
$$\begin{aligned}&\frac{\partial ^{k+l}}{\partial x^{2k}y^{2l}} \hat{g}(x^2, y^2)\bigg \vert _{x=y=0}\\&\quad =\frac{2(-1)^{k+l}k!l!}{\sqrt{3} (2k+1)!(2l+1)!}\int _0^\infty t^{2k+2l+2}\frac{\sinh (\pi t/6)}{\sinh (\pi t /2)}\mathrm{d}t. \end{aligned}$$
Let \(c_k\) denote the moment
$$\begin{aligned} c_k=\int t^k \mathrm{d}\mu (t), \end{aligned}$$
where
$$\begin{aligned} \int f(t) \mathrm{d}\mu (t)=\int _0^\infty f(t^2) t^2 \frac{\sinh (\pi t/6)}{\sinh (\pi t /2)}\mathrm{d}t. \end{aligned}$$
The corresponding inner product is
$$\begin{aligned} \left\langle p(t), q(t)\right\rangle =\int _0^\infty p(t^2) q(t^2) t^2 \frac{\sinh (\pi t/6)}{\sinh (\pi t /2)}\mathrm{d}t, \end{aligned}$$
for polynomials p and q.
In the limit \(x_i, y_j\rightarrow 0\), the partition function thus equals
$$\begin{aligned}&Z_{n,m}(\gamma , \dots , \gamma , 0, \dots , 0) = (-1)^{\left( {\begin{array}{c}n\\ 2\end{array}}\right) +mn}\prod _{i=1}^n \frac{1}{(2i-1)!}\prod _{j=1}^m \frac{1}{(2j-1)!}\\&\quad \times \frac{2^{n-2m-m^2-n^2}}{3^{m/2}}(n-m)!\ \varphi ^{n-m}e^{\left( \left( {\begin{array}{c}m\\ 2\end{array}}\right) -mn\right) \gamma }f(\gamma )^{m+2mn}f(2\gamma )^n(1-e^{2\zeta })^m \\&\quad \times \det \begin{pmatrix} c_0 &{}\quad -c_1 &{} \quad \cdots &{}\quad (-1)^{n+1} c_{n-1}\\ -c_1 &{}\quad c_2 &{}\quad \cdots &{}\quad (-1)^{n+2} c_n\\ \vdots &{} \quad \vdots &{}\quad \ddots &{}\quad \vdots \\ (-1)^{m+1} c_{m-1} &{}\quad (-1)^{m+2}c_m &{}\quad \cdots &{} (-1)^{n+m} c_{n+m-2}\\ 1 &{}\quad (2(n-m))^2 &{}\quad \cdots &{}\quad (2(n-m))^{2(n-1)}\\ \vdots &{}\quad \vdots &{}\quad \ddots &{} \quad \vdots \\ 1 &{}\quad 2^2 &{}\quad \cdots &{}\quad 2^{2(n-1)} \end{pmatrix}. \end{aligned}$$
We can write the entries \(c_k\) in terms of inner products. Since
$$\begin{aligned} (-1)^{\frac{n(n-1)}{2}+\left\lfloor \frac{n}{2}\right\rfloor }=1 \end{aligned}$$
for all n, the partition function above becomes
$$\begin{aligned}&Z_{n,m}(\gamma , \dots , \gamma , 0, \dots , 0)=(-1)^{mn-m(m-1)/2}\prod _{i=1}^n \frac{1}{(2i-1)!}\prod _{j=1}^m \frac{1}{(2j-1)!}\\&\quad \times \frac{2^{n-2m-m^2-n^2}}{3^{m/2}} (n-m)!\ \varphi ^{n-m}e^{\left( \left( {\begin{array}{c}m\\ 2\end{array}}\right) -nm\right) \gamma }f(\gamma )^{2mn+m}f(2\gamma )^n(1-e^{2\zeta })^m\\&\quad \times \det \begin{pmatrix} \left\langle 1,1\right\rangle &{} \left\langle t,1\right\rangle &{} \cdots &{} \left\langle t^{n-1},1\right\rangle \\ \left\langle 1,t\right\rangle &{} \left\langle t,t\right\rangle &{} \cdots &{} \left\langle t^{n-1},t\right\rangle \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ \left\langle 1, t^{m-1}\right\rangle &{} \left\langle t, t^{m-1}\right\rangle &{} \cdots &{} \left\langle t^{n-1}, t^{m-1}\right\rangle \\ 1 &{} -(2(n-m))^2 &{} \cdots &{} (-1)^{n-1}(2(n-m))^{2(n-1)}\\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ 1 &{} -2^2 &{} \cdots &{} (-1)^{n-1}2^{2(n-1)} \end{pmatrix}. \end{aligned}$$
Similar determinants show up, for example, in [14]. By row and column operations, the determinant can be rewritten, and the partition function is
$$\begin{aligned}&Z_{n,m}(\gamma , \dots , \gamma , 0, \dots , 0) =(-1)^{mn-m(m-1)/2}\prod _{j=1}^n \frac{1}{(2j-1)!}\prod _{j=1}^m \frac{1}{(2j-1)!}\\&\quad \times \frac{2^{n-2m-m^2-n^2}}{3^{m/2}} (n-m)!\ \varphi ^{n-m}e^{\left( \left( {\begin{array}{c}m\\ 2\end{array}}\right) -nm\right) \gamma }f(\gamma )^{2mn+m}f(2\gamma )^n(1-e^{2\zeta })^m\\&\quad \times \det \begin{pmatrix} \left\langle p_0(t), q_0(t)\right\rangle &{}\quad \left\langle p_1(t), q_0(t)\right\rangle &{}\quad \cdots &{}\quad \left\langle p_{n-1}(t),q_0(t)\right\rangle \\ \left\langle p_0(t), q_1(t)\right\rangle &{}\quad \left\langle p_1(t), q_1(t)\right\rangle &{}\quad \cdots &{}\quad \left\langle p_{n-1}(t),q_1(t)\right\rangle \\ \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad \vdots \\ \left\langle p_0(t), q_{m-1}(t)\right\rangle &{}\quad \left\langle p_1(t), q_{m-1}(t)\right\rangle &{}\quad \cdots &{}\quad \left\langle p_{n-1}(t), q_{m-1}(t)\right\rangle \\ p_0(-(2(n-m))^2) &{}\quad p_1(-(2(n-m))^2) &{}\quad \cdots &{} p_{n-1}(-(2(n-m))^2)\\ \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad \vdots \\ p_0(-4^2) &{}\quad p_1(-4^2) &{}\quad \cdots &{}\quad p_{n-1}(-4^2)\\ p_0(-2^2) &{}\quad p_1(-2^2) &{}\quad \cdots &{}\quad p_{n-1}(-2^2) \end{pmatrix}, \end{aligned}$$
where \(p_k(t)\) and \(q_k(t)\) are arbitrary monic polynomials of degree k. We can choose \(\{p_i=q_i\}_{i=1}^n\) orthogonal, i.e.
$$\begin{aligned} \left\langle p_k(t), p_l(t)\right\rangle =\int p_k(t) p_l(t) \mathrm{d}\mu (t)=h_k \delta _{kl}, \end{aligned}$$
(15)
for some \(h_k\). Then, most entries in the upper part of the matrix become 0, and we can simplify the expression further. We also rearrange the rows. Then, the partition function is
$$\begin{aligned}&Z_{n,m}(\gamma , \dots , \gamma , 0, \dots , 0)\nonumber \\&\quad =\frac{2^{n-2m-m^2-n^2}}{3^{m/2}} (n-m)!\ \varphi ^{n-m}e^{\left( \left( {\begin{array}{c}m\\ 2\end{array}}\right) -nm\right) \gamma }f(\gamma )^{2mn+m}f(2\gamma )^n(1-e^{2\zeta })^m\nonumber \\&\qquad \times (-1)^{\left( {\begin{array}{c}n\\ 2\end{array}}\right) +m}\prod _{j=1}^n \frac{1}{(2j-1)!}\prod _{j=1}^m \frac{1}{(2j-1)!} \prod _{i=0}^{m-1} \left\langle p_i(t), p_i(t)\right\rangle \nonumber \\&\qquad \times \det \begin{pmatrix} p_m(-2^2) &{}\quad p_{m+1}(-2^2) &{}\quad \cdots &{}\quad p_{n-1}(-2^2)\\ p_m(-4^2) &{}\quad p_{m+1}(-4^2) &{}\quad \cdots &{}\quad p_{n-1}(-4^2)\\ \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad \vdots \\ p_m(-(2(n-m))^2) &{}\quad p_{m+1}(-(2(n-m))^2) &{}\quad \cdots &{}\quad p_{n-1}(-(2(n-m))^2) \end{pmatrix}. \end{aligned}$$
(16)
Wilson polynomials
Colomo and Pronko [14] found a way to write the determinant formula of the partition function of the 6V model with DWBC in terms of orthogonal polynomials. In this section, we show that we can rewrite the determinant formula (4) in terms of orthogonal polynomials as well.
We can rewrite the weight \(\mu (t)\) in terms of the gamma function, defined as the analytic continuation of the integral
$$\begin{aligned} \Gamma (z)=\int _0^\infty x^{z-1} e^{-x} \mathrm{d}x, \end{aligned}$$
which is defined only for \(Re (z)>0\). It can be shown that the gamma function satisfies the following identities:
$$\begin{aligned} \vert \Gamma (1+\mathrm {i}x)\vert ^2=\frac{\pi x}{\sinh (\pi x)} \end{aligned}$$
and
$$\begin{aligned} \prod _{k=0}^{l-1}\Gamma \left( x+\frac{k}{l}\right) =(2\pi )^{\frac{l-1}{2}} l^{\frac{1}{2}-lx}\Gamma (lx). \end{aligned}$$
(17)
Hence, we have
$$\begin{aligned} \mu (t)&= t^2 \frac{\sinh (\pi t/6)}{\sinh (\pi t /2)}\nonumber \\&=\frac{3^2}{2^2\pi ^3}\left| \frac{\Gamma (\mathrm {i}t/6+1/3)\Gamma (\mathrm {i}t/6+1/2)\Gamma (\mathrm {i}t/6+2/3)\Gamma (\mathrm {i}t/6+1)}{\Gamma (\mathrm {i}t/3)}\right| ^2. \end{aligned}$$
(18)
This is the orthogonality weight for a known family of polynomials, namely the Wilson polynomials. These are defined in terms of generalized hypergeometric series as (see, e.g. [17])
$$\begin{aligned} \frac{W_k(x^2; a, b,c,d)}{(a+b)_k (a+c)_k (a+d)_k}= {}_4 F_3 \left( \begin{matrix} -k, k+a+b+c+d-1, a+\mathrm {i}x, a-\mathrm {i}x\\ a+b, a+c, a+d \end{matrix} \bigg \vert 1 \right) , \end{aligned}$$
where the orthogonality condition reads
$$\begin{aligned}&\frac{1}{2\pi } \int _0^\infty W_k(x^2; a, b,c,d) W_l(x^2; a, b,c,d)\nonumber \\&\qquad \times \left| \frac{\Gamma (\mathrm {i}x+a)\Gamma (\mathrm {i}x+b)\Gamma (\mathrm {i}x+c)\Gamma (\mathrm {i}x+d)}{\Gamma (2\mathrm {i}x)} \right| ^2 \mathrm{d}x\nonumber \\&\quad =\frac{\Gamma (k+a+b)\Gamma (k+a+c)\Gamma (k+a+d)\Gamma (k+b+c)\Gamma (k+b+d)\Gamma (k+c+d)}{\Gamma (2k+a+b+c+d)}\nonumber \\&\qquad \times (k+a+b+c+d-1)_k k! \delta _{kl}, \end{aligned}$$
(19)
and where \((a)_k=a(a+1)\cdots (a+k-1)\), for \(k\ge 1\), and \((a)_0=1\) is the rising factorial. Comparing this to (15) and (18), we choose the parameters \(a=1/3\), \(b=1/2\), \(c=2/3\), \(d=1\) and \(x=t/6\). Then, the Wilson polynomials are:
$$\begin{aligned}&W_k\left( \left( \frac{t}{6}\right) ^2; \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, 1\right) \nonumber \\&\quad = (5/6)_k (4/3)_k k! \sum _{j=0}^k \frac{(-k)_j (3/2+k)_j(1/3+\mathrm {i}t/6)_j(1/3-\mathrm {i}t/6)_j}{(5/6)_j (4/3)_j (j!)^2}. \end{aligned}$$
(20)
These are polynomials in \(t^2\) of degree k, with leading coefficient
$$\begin{aligned} \kappa _k = \frac{(-1)^k (3/2+k)_k }{6^{2k}}. \end{aligned}$$
(21)
The polynomials can hence be written
$$\begin{aligned} W_k\left( \left( \frac{t}{6}\right) ^2; \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, 1\right) =\kappa _k p_k(t^2), \end{aligned}$$
where \(p_k(t)\) is a monic polynomial of degree k in t. The right-hand side of (19) with the above choices of parameters is
$$\begin{aligned}&\frac{\Gamma (k+5/6)\Gamma (k+1)\Gamma (k+4/3)\Gamma (k+7/6)\Gamma (k+3/2)\Gamma (k+5/3)}{\Gamma (2k+5/2)}\nonumber \\&\quad \times (k+3/2)_k k!\delta _{kl} = \frac{\pi ^2 (k+3/2)_k k! (6k+4)!(2k+1)!}{2^{2k-1}3^{6k+9/2}(4k+3)!}\delta _{kl}, \end{aligned}$$
(22)
where we have used (17) and the fact that \(\Gamma (j+1)=j!\) if j is a nonnegative integer.
We insert (19)–(22) into (15) and get
$$\begin{aligned}&\left\langle p_k(t), p_l(t) \right\rangle =\frac{2^{2k+1} k! (6k+4)!(2k+1)!}{3^{2k+3/2} (3/2+k)_k(4k+3)!}\delta _{kl}. \end{aligned}$$
Hence,
$$\begin{aligned} \prod _{j=0}^{m-1} \left\langle p_j(t), p_j(t)\right\rangle&=\frac{2^{2m^2-m}}{3^{m^2+m/2} }\prod _{j=1}^{m} \frac{(6j-2)!((2j-1)!)^2(2j-2)!}{ (4j-3)! (4j-1)!}, \end{aligned}$$
where we used that
$$\begin{aligned} (x)_k=\frac{\Gamma (x+k)}{\Gamma (x)}. \end{aligned}$$
(23)
Insert \(p_k(t^2)=W_k\left( \left( \frac{t}{6}\right) ^2; \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, 1\right) /\kappa _k\) into the partition function (16), which then reads
$$\begin{aligned}&Z_{n,m}(\gamma , \dots , \gamma , 0, \dots , 0)\\&\quad = \frac{2^{n-n^2-3m+m^2}}{3^{m^2+m} } (n-m)!\ \varphi ^{n-m}e^{\left( \left( {\begin{array}{c}m\\ 2\end{array}}\right) -nm\right) \gamma }f(\gamma )^{2mn+m}f(2\gamma )^n(1-e^{2\zeta })^m\nonumber \\&\qquad \times (-1)^{\left( {\begin{array}{c}n\\ 2\end{array}}\right) +m}\prod _{i=m+1}^n \frac{1}{(2i-1)!}\prod _{j=1}^m \frac{(6j-2)!(2j-2)!}{(4j-3)! (4j-1)!}\nonumber \\&\qquad \times \det _{1\le l,j\le n-m}\left( W_{m+j-1}\left( -\frac{l^2}{9}; \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, 1\right) \bigg /\kappa _{m+j-1}\right) . \end{aligned}$$
We factor out \(\kappa _{m+j-1}\) from each column of the determinant and use (23) and get
$$\begin{aligned}&Z_{n,m}(\gamma , \dots , \gamma , 0, \dots , 0)\nonumber \\&\quad = \frac{2^{n^2-n-m^2-m}}{3^{2m^2-n^2+n} } (n-m)!\ \varphi ^{n-m}e^{\left( \left( {\begin{array}{c}m\\ 2\end{array}}\right) -nm\right) \gamma }f(\gamma )^{2mn+m}f(2\gamma )^n(1-e^{2\zeta })^m\nonumber \\&\qquad \times (-1)^{\left( {\begin{array}{c}m+1\\ 2\end{array}}\right) }\prod _{j=1}^n \frac{(2j-2)!}{(4j-3)!} \prod _{j=1}^m \frac{(6j-2)!}{ (4j-1)!}\prod _{j=m+1}^n \frac{1}{(j-1)!}\nonumber \\&\qquad \times \det _{1\le l,j\le n-m}\left( W_{m+j-1}\left( -\frac{l^2}{9}; \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, 1\right) \right) . \end{aligned}$$
(24)
A formula for the number of states
Next, we rewrite the partition function as a sum over the number of positive turns, k, to be able to identify the terms with the terms in the formulas from Sect. 4. We write
$$\begin{aligned} 1-e^{2\zeta }=-\frac{e^{\gamma }f(\gamma )}{f(2\gamma )}\left( (e^{2\zeta }-e^{-2\gamma })+\frac{e^{2\zeta }-e^{2\gamma }}{e^{2\gamma }}\right) , \end{aligned}$$
and by using the binomial theorem we get
$$\begin{aligned} (1-e^{2\zeta })^m =\left( -\frac{e^\gamma f(\gamma )}{f(2\gamma )}\right) ^m\sum _{k=0}^m \left( \left( {\begin{array}{c}m\\ k\end{array}}\right) (e^{2\zeta }-e^{-2\gamma })^k\left( \frac{e^{2\zeta }-e^{2\gamma }}{e^{2\gamma }}\right) ^{m-k}\right) . \end{aligned}$$
For \(\gamma =4\pi \mathrm {i}/3\), we have \(f(2\gamma )=-f(\gamma )\) and \(f(\gamma )^2=-3\). The partition function (24) thus becomes
$$\begin{aligned}&Z_{n,m}(\gamma , \dots , \gamma , 0, \dots , 0)=\sum _{k=0}^m \left( \left( {\begin{array}{c}m\\ k\end{array}}\right) (e^{2\zeta }-e^{-2\gamma })^k\left( \frac{e^{2\zeta }-e^{2\gamma }}{e^{2\gamma }}\right) ^{m-k}\right) \\&\quad \times (-1)^{\left( {\begin{array}{c}m+1\\ 2\end{array}}\right) +mn+n}\frac{2^{n^2-n-m^2-m}}{3^{2m^2-n^2+n-mn}} (n-m)!\ \varphi ^{n-m}e^{\left( \left( {\begin{array}{c}m+1\\ 2\end{array}}\right) -nm\right) \gamma }f(\gamma )^{m+n}\\&\quad \times \prod _{j=1}^n \frac{(2j-2)!}{(4j-3)!} \prod _{j=1}^m \frac{(6j-2)!}{ (4j-1)!}\prod _{j=m+1}^n \frac{1}{(j-1)!}\\&\quad \times \det _{1\le l,j\le n-m}\left( W_{m+j-1}\left( -\frac{l^2}{9}; \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, 1\right) \right) . \end{aligned}$$
The terms \((e^{2\zeta }-e^{-2\gamma })^k\left( \frac{e^{2\zeta }-e^{2\gamma }}{e^{2\gamma }}\right) ^{m-k}\) are linearly independent for different k’s as functions of \(\zeta \), since the kth term has a zero of degree \(m-k\) in \(\zeta =\gamma \). Therefore, we can fix a k as in the previous section, and we get
$$\begin{aligned}&Z_{n,m,k}(\gamma , \dots , \gamma , 0,\dots , 0)=\left( {\begin{array}{c}m\\ k\end{array}}\right) (e^{2\zeta }-e^{-2\gamma })^k\left( \frac{e^{2\zeta }-e^{2\gamma }}{e^{2\gamma }}\right) ^{m-k}\nonumber \\&\quad \times (-1)^{\left( {\begin{array}{c}m+1\\ 2\end{array}}\right) +mn+n}\frac{2^{n^2-n-m^2-m}}{3^{2m^2-n^2+n-mn}} (n-m)!\ \varphi ^{n-m}e^{\left( \left( {\begin{array}{c}m+1\\ 2\end{array}}\right) -nm\right) \gamma }f(\gamma )^{m+n}\nonumber \\&\quad \times \prod _{j=1}^n \frac{(2j-2)!}{(4j-3)!} \prod _{j=1}^m \frac{(6j-2)!}{ (4j-1)!}\prod _{j=m+1}^n \frac{1}{(j-1)!}\nonumber \\&\quad \times \det _{1\le l,j\le n-m}\left( W_{m+j-1}\left( -\frac{l^2}{9}; \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, 1\right) \right) . \end{aligned}$$
(25)
Now we can go back to \(N_k\) (12), the number of states where k is the number of \(k_+\) turns. We insert (25) and get the following theorem.
Theorem 5.1
For the 6V model with DWBC and a partially reflecting end, the number of states with exactly k turns of type \(k_+\) is
$$\begin{aligned} N_k&=\left( {\begin{array}{c}m\\ k\end{array}}\right) \frac{2^{n^2-n-m^2-m}(n-m)!}{3^{2m^2-m-n^2+n-mn}} \prod _{j=1}^n \frac{(2j-2)!}{(4j-3)!} \prod _{j=1}^m \frac{(6j-2)!}{ (4j-1)!}\prod _{j=m+1}^n \frac{1}{(j-1)!}\nonumber \\&\quad \times \det _{1\le l,j\le n-m}\left( W_{m+j-1}\left( -\frac{l^2}{9}; \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, 1\right) \right) . \end{aligned}$$
(26)
As a corollary, we get that the total number of states (13) of the model is
$$\begin{aligned} A(m,n)&=\frac{2^{n^2-n-m^2}(n-m)!}{3^{2m^2-m-n^2+n-mn}} \prod _{j=1}^n \frac{(2j-2)!}{(4j-3)!} \prod _{j=1}^m \frac{(6j-2)!}{ (4j-1)!}\prod _{j=m+1}^n \frac{1}{(j-1)!}\\&\quad \times \det _{1\le l,j\le n-m}\left( W_{m+j-1}\left( -\frac{l^2}{9}; \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, 1\right) \right) . \end{aligned}$$
From Proposition 4.3, it thus follows that the number of matrices described in Sect. 4.1 is also given by this expression.
An alternative expression for the number of states
In this section, we derive another way to present the expression (26). We can insert the formula (20) for \(W_{m+j-1}\left( -\frac{k^2}{9}; \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, 1\right) \) into the determinant
$$\begin{aligned} D=\det _{1\le k,j\le n-m}\left( W_{m+j-1}\left( -\frac{k^2}{9}; \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, 1\right) \right) . \end{aligned}$$
Factor out \((5/6)_{m+j-1} (4/3)_{m+j-1} (m+j-1)!\) from each column j. We can rewrite the sum in each determinant entry
$$\begin{aligned} \sum _{l=0}^{m+j-1} \frac{(1-m-j)_l (1/2+m+j)_l(1/3-k/3)_l(1/3+k/3)_l}{(5/6)_l(4/3)_l (l!)^2} \end{aligned}$$
of row k and column j to go from 0 to \(n-1\), since the terms disappear when \(l> m+j-1\). We then get
$$\begin{aligned} D&=\prod _{j=m}^{n-1}(5/6)_j (4/3)_j j! \\&\quad \times \det _{1\le k,j\le n-m}\left( \sum _{l=0}^{n-1} \frac{(1-m-j)_l (1/2+m+j)_l(1/3+k/3)_l(1/3-k/3)_l}{(5/6)_l (4/3)_l (l!)^2}\right) . \end{aligned}$$
We use linearity of the rows and write the determinant as a sum of determinants. The above becomes
$$\begin{aligned} D&=\prod _{j=m}^{n-1}(5/6)_j (4/3)_j j!\sum _{l_1, l_2, \dots , l_{n-m}=0}^{n-1}\left( \prod _{i=1}^{n-m} \frac{((1-i)/3)_{l_i}((1+i)/3)_{l_i}}{(5/6)_{l_i} (4/3)_{l_i} (l_i!)^2}\right. \\&\quad \left. \times \det _{1\le k,j\le n-m}\left( (1-m-j)_{l_k} (1/2+m+j)_{l_k}\right) \right) . \end{aligned}$$
Since \((x)_j/(x)_i=(x+i)_{j-i}\), for \(j\ge i\), we can write
$$\begin{aligned}&(1-m-j)_{l_k} (1/2+m+j)_{l_k}\\&\quad =\frac{(1-n)_{l_k}(m+3/2)_{l_k}}{(1-n)_{n-m-j}(m+3/2)_{j-1}}(1-n+l_k)_{n-m-j}(m+3/2+l_k)_{j-1}, \end{aligned}$$
and we can factor out all factors that depend either only on row k or only on column j. The determinant D now becomes
$$\begin{aligned} D&= \prod _{j=m}^{n-1}(5/6)_j (4/3)_j j! \\&\quad \times \sum _{l_1, l_2, \dots , l_{n-m}=0}^{n-1}\left( \prod _{i=1}^{n-m} \frac{((1-i)/3)_{l_i}((1+i)/3)_{l_i}(1-n)_{l_i}(m+3/2)_{l_i}}{(5/6)_{l_i} (4/3)_{l_i} (l_i!)^2 (1-n)_{i-1}(m+3/2)_{i-1}}\right. \\&\quad \times \left. \det _{1\le k,j,\le n-m}\left( (1-n+l_k)_{n-m-j}(m+3/2+l_k)_{j-1}\right) \right) . \end{aligned}$$
Each element of the alternant matrix
$$\begin{aligned} \hat{D}=\det _{1\le k,j,\le n-m}\left( (1-n+l_k)_{n-m-j}(m+3/2+l_k)_{j-1}\right) \end{aligned}$$
is a polynomial in \(l_k\) of degree \(n-m-1\). This is a special case of a bigger family of determinants, see further [18, Lemma 3]. The determinant is
$$\begin{aligned} \hat{D}=C \prod _{1\le i < j \le n-m} (l_i-l_j) \end{aligned}$$
for some C not depending on the \(l_k\)’s. To find C, we put \(l_k=-k-m-1/2\) which makes the matrix triangular. Then,
$$\begin{aligned}&\prod _{j=0}^{n-m-1}(-1)^j j!(-1/2-n-m-j)_{n-m-1-j} =C \prod _{1\le i < j \le n-m} (j-i), \end{aligned}$$
so
$$\begin{aligned} C =\prod _{j=1}^{n-m}(5/2+2n-2j)_{j-1}. \end{aligned}$$
Hence, the determinant D becomes
$$\begin{aligned} D&=\prod _{j=m}^{n-1}(5/6)_j (4/3)_j j!\prod _{j=1}^{n-m} \frac{(5/2+2n-2j)_{j-1}}{(1-n)_{j-1}(m+3/2)_{j-1}}\\&\quad \times \sum _{l_1, l_2, \dots , l_{n-m}=0}^{n-1}\left( \prod _{i=1}^{n-m} \frac{((1-i)/3)_{l_i}((1+i)/3)_{l_i}(1-n)_{l_i}(m+3/2)_{l_i}}{(5/6)_{l_i} (4/3)_{l_i} (l_i!)^2}\right. \\&\quad \left. \times \prod _{1\le i < j \le n-m} (l_i-l_j)\right) . \end{aligned}$$
Series of similar type appear, for example, in [19, 20].
Inserting the above into (26) of the last section, we get an expression for the number of states with exactly k turns of type \(k_+\) as an \((n-m)\)-fold hypergeometric sum,
$$\begin{aligned} N_k&=\left( {\begin{array}{c}m\\ k\end{array}}\right) \frac{2^{n^2-n-m^2-m}(n-m)!}{3^{2m^2-m-n^2+n-mn}} \prod _{j=1}^n \frac{(2j-2)!}{(4j-3)!}\prod _{j=1}^m \frac{(6j-2)!}{(4j-1)!} \\&\quad \times \prod _{j=m+1}^n (5/6)_{j-1} (4/3)_{j-1}\prod _{j=1}^{n-m} \frac{(5/2+2n-2j)_{j-1}}{(1-n)_{j-1}(m+3/2)_{j-1}}\\&\quad \times \sum _{l_1, l_2, \dots , l_{n-m}=0}^{n-1}\left( \prod _{i=1}^{n-m} \frac{((1-i)/3)_{l_i}((1+i)/3)_{l_i}(1-n)_{l_i}(m+3/2)_{l_i}}{(5/6)_{l_i} (4/3)_{l_i} (l_i!)^2}\right. \\&\quad \times \left. \prod _{1\le i < j \le n-m} (l_i-l_j)\right) . \end{aligned}$$