Skip to main content
Log in

On the second realization for the positive part of \(U_q(\widehat{sl_2})\) of equitable type

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

The equitable presentation of the quantum algebra \(U_q(\widehat{sl_2})\) is considered. This presentation was originally introduced by Ito and Terwilliger. In this paper, following Terwilliger’s recent works the (nonstandard) positive part of \(U_q(\widehat{sl_2})\) of equitable type \(U_q^{IT,+}\) and its second realization (current algebra) \(U_q^{T,+}\) are introduced and studied. A presentation for \(U_q^{T,+}\) is given in terms of a K-operator satisfying a Freidel–Maillet-type equation and a condition on its quantum determinant. Realizations of the K-operator in terms of Ding–Frenkel L-operators are considered, from which an explicit injective homomorphism from \(U_q^{T,+}\) to a subalgebra of Drinfeld’s second realization (current algebra) of \(U_q(\widehat{sl_2})\) is derived, and the comodule algebra structure of \(U_q^{T,+}\) is characterized. The central extension of \(U_q^{T,+}\) and its relation with Drinfeld’s second realization of \(U_q(\widehat{gl_2})\) is also described using the framework of Freidel–Maillet algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. As usual, ‘\(\mathrm tr_{12}\)’ stands for the trace over \(\mathcal V_1 \otimes \mathcal V_2\). Also, we denote \(P^{-}_{12}=(1-P)/2\).

  2. The index [j] characterizes the ‘quantum space’ \(V_{[j]}\) on which the entries of \(L^\pm (z)\) act. With respect to the ordering \(V_{[1]}\otimes V_{[2]}\), one has:

    figure a
  3. With respect to the ordering \(V_{[1]}\otimes V_{[2]}\):

    figure b

References

  1. Baseilhac, P.: The alternating presentation of \(U_q(\widehat{gl_2})\) from Freidel-Maillet algebras. Nucl. Phys. B 967, 115400 (2021). arXiv:2011.01572

  2. Baseilhac, P.: Freidel-Maillet type presentations of \(U_q(sl_2)\), arXiv:2106.11715

  3. Baxter, R.: Exactly Solvable Models in Statistical Mechanics. Academic Press, New York (1982)

    MATH  Google Scholar 

  4. Beck, J.: Braid group action and quantum affine algebras. Commun. Math. Phys. 165, 555–568 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  5. Beck, J., Chari, V., Pressley, A.: An algebraic characterization of the affine canonical basis Duke Math. J. 99(3), 455–487 (1999). arXiv:math/9808060

  6. Chari, V., Pressley, A.: Quantum affine algebras. Commun. Math. Phys. 142, 261–283 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  7. Chari, V., Pressley, A.: A Guide to Quantum Groups. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  8. Cherednik, I.V.: Factorizing particles on the half-line and root systems. Theor. Math. Fiz. 61, 35–44 (1984)

    MathSciNet  MATH  Google Scholar 

  9. Ding, J., Frenkel, I.: Isomorphism of two realizations of quantum affine algebra \(U_q(\widehat{sl(n)})\). Commun. Math. Phys. 156, 277–300 (1993)

    Article  ADS  Google Scholar 

  10. Drinfeld, V.G.: Quantum groups. Proc. ICM Berkeley 1, 789–820 (1986)

    Google Scholar 

  11. Drinfeld, V.G.: A new realization of yangians and quantum affine algebras. Sov. Mat. Dokl. 36, 212–216 (1988)

    MathSciNet  Google Scholar 

  12. Faddeev, L.D., Reshetikhin, N.Y., Takhtajan, L.A.: Quantization of Lie groups and Lie algebras. Algebra Anal. 1(1), 118–206 (1989). (Russian)

    MathSciNet  Google Scholar 

  13. Faddeev, L.D., Reshetikhin, N.Y., Takhtajan, L.A.: Quantization of Lie Groups and Lie Algebras, Yang-baxter Equation in Integrable Systems, Advanced Series in Mathematical Physics, vol. 10, pp. 299–309. World Scientific, Singapore (1989)

    Google Scholar 

  14. Freidel, L., Maillet, J.M.: Quadratic algebras and integrable systems. Phys. Lett. B 262, 278 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  15. Frenkel, E., Mukhin, E.: The Hopf algebra \(RepU_q\widehat{gl}_\infty \). Sel. Math. 8, 537–635 (2002). arXiv:math/0103126v2

  16. Gao, Y., Jing, N.: \(U_q(\widehat{gl_N})\) action on \(\widehat{gl_N}\)-modules and quantum toroidal algebras. J. Algebra 273, 320–343 (2004). arXiv:math/0202292

  17. Ito, T., Terwilliger, P.: Tridiagonal pairs and the quantum affine algebra \(U_q(\widehat{sl_2})\). Ramanujan J. 13, 39–62 (2007). arXiv:math/0310042

  18. Jimbo, M.: A q-difference analog of \(U(\widehat{g})\) and the Yang-Baxter equation. Lett. Math. Phys. 10, 63–69 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  19. Jing, N., Liu, M., Molev, A.: Isomorphism between the R-matrix and Drinfeld presentations of quantum affine algebra: type C. J. Math. Phys. 61, 031701 (2020). arXiv:1903.00204

  20. Jing, N., Liu, M., Molev, A.: Isomorphism between the R-Matrix and Drinfeld presentations of quantum affine algebra: Types B and D. SIGMA 16, 043 (2020). arXiv:1911.03496

  21. Liashyk, A., Pakuliak, S.Z.: On the R-matrix realization of quantum loop algebras. arXiv:2106.10666

  22. Reshetikhin, N.Y., Semenov Tian-Shansky, M.: Central extensions of quantum current roups. Lett. Math. Phys. 19, 133–142 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  23. Sklyanin, E.K.: Boundary conditions for integrable quantum systems. J. Phys. A 21, 2375–2389 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  24. Terwilliger, P.: Using Catalan words and a q-shuffle algebra to describe a PBW basis for the positive part of \(U_q(\widehat{sl_2})\). J. Algebra 525 359–373 (2019). arXiv:1806.11228

  25. Terwilliger, P.: The alternating PBW basis for the positive part of \(U_q(\widehat{sl_2})\). J. Math. Phys. 60, 071704 (2019). arXiv:1902.00721

  26. Terwilliger, P.: The alternating central extension for the positive part of \(U_q(\widehat{sl_2})\). Nucl. Phys. B 947, 114729 (2019). arXiv:1907.09872

  27. Terwilliger, P.: The algebra \(U_q^+\) and its alternating central extension \({\cal{U}}_q^+\), preprint (2021)

Download references

Acknowledgements

I thank Paul Terwilliger for many discussions, kind explanations of his work and important comments on the manuscript. Also, I thank him for sharing the unpublished results of [27] which motivated the analysis of Sect. 4. P.B. is supported by C.N.R.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Baseilhac.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Drinfeld–Jimbo and Drinfeld (second realization) presentation of \(U_q(\widehat{sl_2})\)

Appendix A. Drinfeld–Jimbo and Drinfeld (second realization) presentation of \(U_q(\widehat{sl_2})\)

For the quantum affine Kac–Moody algebra \(U_q(\widehat{sl_2})\), two standard presentations are recalled. The Drinfeld–Jimbo presentation \(U_q^{DJ}\) and the Drinfeld (second) presentation \(U_q^{Dr}\), see, e.g., [7, p.392].

1.1 A.1. Drinfeld–Jimbo presentation \(U_q^{DJ}\)

Define the extended Cartan matrix \(\{a_{ij}\}\) (\(a_{ii}=2\), \(a_{ij}=-2\) for \(i\ne j\)). The quantum affine algebra \(U_{q}(\widehat{sl_2})\) over \({{\mathbb {C}}}(q)\) is generated by \(\{E_j,F_j,K_j^{\pm 1}\}\), \(j\in \{0,1\}\) which satisfy the defining relations

$$\begin{aligned}&K_iK_j=K_jK_i, \, K_iK_i^{-1}=K_i^{-1}K_i=1, \, K_iE_jK_i^{-1}= q^{a_{ij}}E_j ,\, K_iF_jK_i^{-1}= q^{-a_{ij}}F_j\,\\&[E_i,F_j]=\delta _{ij}\frac{K_i-K_i^{-1}}{q-q^{-1}} \end{aligned}$$

together with the \(q-\)Serre relations (\(i\ne j\))

$$\begin{aligned} \big [E_i, \big [E_i, \big [E_i,E_j \big ]_{q} \big ]_{q^{-1}} \big ]= & {} 0\ , \end{aligned}$$
(A.1)
$$\begin{aligned} \big [F_i, \big [F_i, \big [F_i,F_j \big ]_{q} \big ]_{q^{-1}} \big ]= & {} 0\ . \end{aligned}$$
(A.2)

The product \(C=K_0K_1\) is the central element of the algebra.

The Hopf algebra structure is ensured by the existence of a comultiplication \(\Delta \) , antipode \(\mathcal{S}\) and a counit \(\mathcal{E}\) with

$$\begin{aligned} \Delta (E_i)= & {} 1 \otimes E_i + E_i \otimes K_i \ , \nonumber \\ \Delta (F_i)= & {} F_i \otimes 1 + K_i^{-1}\otimes F_i\ ,\nonumber \\ \Delta (K_i)= & {} K_i\otimes K_i\ , \end{aligned}$$
(A.3)
$$\begin{aligned} \mathcal{S}(E_i)=-E_iK_i^{-1} ,\, \mathcal{S}(F_i)=-K_iF_i ,\, \mathcal{S}(K_i)=K_i^{-1}, \, \mathcal{S}({1})=1\ \end{aligned}$$

and

$$\begin{aligned} \mathcal{E}(E_i)=\mathcal{E}(F_i)=0 ,\, \mathcal{E}(K_i)=1,\, \mathcal{E}(1)=1. \end{aligned}$$

1.2 A.2. Drinfeld’s second realization \(U_q^{Dr}\)

A second presentation for the quantum affine algebra \(U_q(\widehat{sl_2})\), known as the Drinfeld’s second realization, is now recalled. In [11], it is shown that \(U_q(\widehat{sl_2})\) is isomorphic to the associative algebra over \({{\mathbb {C}}}(q)\) with generators \(\{{{\textsf {x}}}_k^{\pm }, {\textsf {h}}_{\ell }, {\textsf {K}}^{\pm 1} |k\in {{\mathbb {Z}}},\ell \in {{\mathbb {Z}}}\backslash \{0\} \}\), central elements \(C^{\pm 1/2}\) and the following relations (see, e.g., [7, Theorem 12.2.1]):

$$\begin{aligned}&C^{1/2}C^{-1/2}=1\ ,\quad {\textsf {K}}{\textsf {K}}^{-1}={\textsf {K}}^{-1}{\textsf {K}}=1 \ , \end{aligned}$$
(A.4)
$$\begin{aligned}&\big [ {\textsf {h}}_k,{\textsf {h}}_\ell \big ] = \delta _{k+\ell ,0}\frac{1}{k}\big [ 2k \big ]_q \frac{C^k-C^{-k}}{q-q^{-1}} \ , \qquad \big [{\textsf {h}}_k, {\textsf {K}}^{\pm 1} \big ] =0\ , \end{aligned}$$
(A.5)
$$\begin{aligned}&\big [ {\textsf {h}}_k, {\textsf {x}}^\pm _\ell \big ] = \pm \frac{1}{k}\big [ 2k\big ]_q C^{\mp |k|/2} {\textsf {x}}^\pm _{k+\ell }\ , \end{aligned}$$
(A.6)
$$\begin{aligned}&{\textsf {K}}{\textsf {x}}^\pm _k {\textsf {K}}^{-1} = q^{\pm 2} {\textsf {x}}^\pm _{k} \ , \end{aligned}$$
(A.7)
$$\begin{aligned}&{\textsf {x}}^\pm _{k+1} {\textsf {x}}^\pm _\ell -q^{\pm 2} {\textsf {x}}^\pm _{\ell } {\textsf {x}}^\pm _{k+1} = q^{\pm 2} {\textsf {x}}^\pm _{k} {\textsf {x}}^\pm _{\ell +1} - {\textsf {x}}^\pm _{\ell +1} {\textsf {x}}^\pm _k \ , \end{aligned}$$
(A.8)
$$\begin{aligned}&\big [ {\textsf {x}}^+_k, {\textsf {x}}^-_\ell \big ] = \frac{(C^{(k-\ell )/2} \psi _{k+\ell } - C^{-(k-\ell )/2}\phi _{k+\ell })}{q-q^{-1}}\ , \end{aligned}$$
(A.9)

where the \(\psi _{k}\) and \(\phi _{k}\) are defined by the following equalities of formal power series in the indeterminate z:

$$\begin{aligned} \psi (z)= & {} \sum _{k=0}^\infty \psi _{k} z^{-k} = {\textsf {K}}\exp \left( (q-q^{-1}) \sum _{k=1}^{\infty } {\textsf {h}}_k z^{-k} \right) , \end{aligned}$$
(A.10)
$$\begin{aligned} \phi (z)= & {} \sum _{k=0}^\infty \phi _{-k} z = {\textsf {K}}^{-1} \exp \left( - (q-q^{-1}) \sum _{k=1}^{\infty } {\textsf {h}}_{-k} z \right) . \end{aligned}$$
(A.11)

Note that there exists an automorphism such that:

$$\begin{aligned} \theta :&{\textsf {x}}^\pm _k \mapsto {\textsf {x}}^\mp _k ,\, {\textsf {h}}_k \mapsto -{\textsf {h}}_k ,\, {\textsf {K}}\mapsto {\textsf {K}},\, C \mapsto C^{-1},\, q \mapsto q^{-1}. \end{aligned}$$
(A.12)

An isomorphism \(U_q^{DJ}\rightarrow U_q^{Dr}\) is given by (see, e.g., [7, p. 393]:

$$\begin{aligned} K_0 \mapsto C{\textsf {K}}^{-1} , \, K_1 \mapsto {\textsf {K}},\, E_1 \mapsto {\textsf {x}}_0^+ , \, E_0 \mapsto {\textsf {x}}_1^-{\textsf {K}}^{-1} ,\, F_1 \mapsto {\textsf {x}}_0^- , \, F_0 \mapsto {\textsf {K}}{\textsf {x}}_{-1}^+\ .\nonumber \\ \end{aligned}$$
(A.13)

Note that it is still an open problem to find the complete Hopf algebra isomorphism between \(U_q^{DJ}\) and \(U_q^{Dr}\). Only partial information is known, see, e.g., [6, Section 4.4].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baseilhac, P. On the second realization for the positive part of \(U_q(\widehat{sl_2})\) of equitable type. Lett Math Phys 112, 2 (2022). https://doi.org/10.1007/s11005-021-01502-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-021-01502-1

Keywords

Mathematics Subject Classification

Navigation