We now move on to consider the full EAM energy \({\mathcal {E}}\) defined in (2.5) for Lennard-Jones-type potentials \(\phi \) as in (2.7). We split this section into two parts. At first, we address the classical case \(F(r)=r\log r\) analytically and numerically. Afterward, we provide some further numerical studies for the power law case \(F(r) = r^t\).
The classical case \(F(r)=r\log r\)
We start with two theoretical results and then proceed with several numerical investigations.
Two theoretical results
The following corollary is a straightforward application of Theorem 3.1.
Corollary 5.1
(Existence of parameters for the optimality of \({\mathsf {A}}_2\)) Let
$$\begin{aligned} F(r)=r^{ t}\log (\gamma r), \quad \rho (r)=r^{-s}, \quad \text {and}\quad \phi (r)=a r^{-\alpha } - b r^{-\beta }, \end{aligned}$$
for \(\gamma , t >0\), \(s>2\), \(\alpha>\beta >2\), and \(a,b>0\). Then, given parameters \((\alpha ,\beta , \gamma , s,{t})\) such that \( H (\alpha )< H (\beta )\), where H is defined in (2.10), one can find coefficients a and b such that the unique global minimizer in \({\mathcal {L}}_2\) of \({\mathcal {E}}\) is the triangular lattice \(\lambda _{{\mathsf {A}}_2} {\mathsf {A}}_2\) where
$$\begin{aligned}\lambda _{{\mathsf {A}}_2}=e^{\frac{ t^{-1} +\log \gamma }{s}}\zeta _{{\mathsf {A}}_2}(s)^{\frac{1}{s}}.\end{aligned}$$
Moreover, \({\mathsf {A}}_2\) is the unique minimizer of \(L\mapsto \lambda ^{{\mathcal {E}}}_L\) in \({\mathcal {L}}_2(1)\).
Proof
We first remark that F and \( \rho \) satisfy the assumption of Theorem 3.1. By recalling (2.3), (2.6) and using the fact that \(\mathop {\mathrm{argmin}}\nolimits F = \frac{1}{\gamma } e^{-1/t}\), we have
$$\begin{aligned} E_{F,\rho }[\lambda _{{\mathsf {A}}_2}^{F,\rho } {\mathsf {A}}_2]= F\left( (\lambda _{{\mathsf {A}}_2}^{F,\rho })^{-s} \zeta _{{\mathsf {A}}_2}(s)\right) =\min F, \end{aligned}$$
that is to say \((\lambda _{{\mathsf {A}}_2}^{F,\rho })^{-s} \zeta _{{\mathsf {A}}_2}(s)= \frac{1}{\gamma } e^{-1/t}\), i.e.,
$$\begin{aligned} \lambda _{{\mathsf {A}}_2}^{F,\rho }=e^{\frac{ t^{-1} +\log \gamma }{s}}\zeta _{{\mathsf {A}}_2}(s)^{\frac{1}{s}}, \end{aligned}$$
and \(E_{F,\rho }[\lambda _{{\mathsf {A}}_2}^{F,\rho } {\mathsf {A}}_2] = F( (\lambda _{{\mathsf {A}}_2}^{F,\rho })^{-s} \zeta _{{\mathsf {A}}_2}(s) ) = \min F\). On the other hand, we know from [4, Theorem 1.2] that \(E_\phi \) is uniquely minimized in \({\mathcal {L}}_2\) by \(\lambda _{{\mathsf {A}}_2}^\phi {\mathsf {A}}_2\) where
$$\begin{aligned} \lambda _{{\mathsf {A}}_2}^\phi = \left( \frac{\alpha a \zeta _{{\mathsf {A}}_2}(\alpha )}{\beta b \zeta _{{\mathsf {A}}_2}(\beta )}\right) ^{\frac{1}{\alpha -\beta }}, \end{aligned}$$
see (2.8). Hence, if \(\lambda _{{\mathsf {A}}_2}^{F,\rho }=\lambda _{{\mathsf {A}}_2}^\phi \), then \(\lambda _{{\mathsf {A}}_2}^{F,\rho } {\mathsf {A}}_2= \lambda _{{\mathsf {A}}_2}^\phi {\mathsf {A}}_2\) is the unique minimizer of the sum of the two energies \(E_{F,\rho }\) and \(E_\phi \). The identity \(\lambda _{{\mathsf {A}}_2}^{F,\rho }=\lambda _{{\mathsf {A}}_2}^\phi \) is equivalent to equation
$$\begin{aligned} \frac{a}{b}=\frac{\beta \zeta _{{\mathsf {A}}_2}(\beta )}{\alpha \zeta _{{\mathsf {A}}_2}(\alpha )}\zeta _{{\mathsf {A}}_2}(s)^{\frac{\alpha -\beta }{s}}e^{\frac{\alpha -\beta }{s}(t^{-1} +\log \gamma )}. \end{aligned}$$
For this choice of a and b, we thus get that the unique global minimizer in \({\mathcal {L}}_2\) of \({\mathcal {E}}\) is the triangular lattice \(\lambda ^{\mathcal {E}}_{{\mathsf {A}}_2} {\mathsf {A}}_2\) with \(\lambda ^{{\mathcal {E}}}_{{\mathsf {A}}_2}=\lambda _{{\mathsf {A}}_2}^{F,\rho }=\lambda _{{\mathsf {A}}_2}^\phi \). The last statement follows by applying Proposition 2.2 to \(L_d={\mathsf {A}}_2\). \(\square \)
The drawback of the result is that it is not generic in the sense that it holds only for specific coefficients a and b. We now give a result which holds in any dimension for all coefficients \(a,\,b>0\), at the expense of the fact that \(\phi \) and \( \rho \) need to have the same decay \(\mathrm{O}(r^{-s})\). In this regard, the result is in spirit Theorem 4.1 but under the choice \(\phi (r)=ar^{-\alpha }-br^{-s}\).
Theorem 5.2
(EAM energy for Lennard-Jones-type interaction) Let F be as in Theorem 4.1 and additionally suppose that F is convex and in \(C^2({\mathbb {R}}_+)\). Let
$$\begin{aligned} \rho (r)=r^{-s},\quad \phi (r)=ar^{-\alpha }-br^{-s},\quad \text { for } \ d<s<\alpha \quad \text {and} \quad a,\,b>0. \end{aligned}$$
Then, \(\lambda ^{{\mathcal {E}}}_{L}\) exists for all \(L \in {\mathcal {L}}_d(1)\) and the following statements are equivalent:
-
\(L_d\) is the unique minimizer of \( L \mapsto e^*(L)=\frac{\zeta _L(\alpha )^s}{\zeta _L(s)^\alpha }\), see (2.9);
-
\(\lambda _{L_d}^{{\mathcal {E}}} L_d\) is the unique minimizer of \({\mathcal {E}}\) in \({\mathcal {L}}_d\);
-
\(\lambda _{L_d}^{\phi } L_d\) is the unique minimizer in \({\mathcal {L}}_d\) of \( E_{{\phi }}\).
In particular, when \(d=2\) and \( H (\alpha )< H (s)\) where H is defined by (2.10), then the unique minimizer of \({\mathcal {E}}\) in \({\mathcal {L}}_2\) is the triangular lattice \(\lambda _{{\mathsf {A}}_2}^{\mathcal {E}} {\mathsf {A}}_2\).
Furthermore, if \(L_d\) is the unique minimizer of \(L\mapsto \zeta _L(s)\) in \({\mathcal {L}}_d(1)\) as well as a minimizer of \(e^*\) in \({\mathcal {L}}_d(1)\), then \(L_d\) is the unique minimizer of \(L\mapsto \lambda ^{{\mathcal {E}}}_L\) in \({\mathcal {L}}_d(1)\).
Proof
In view of (2.3), the energy \({\mathcal {E}}\) can be written as
$$\begin{aligned} {\mathcal {E}}[L]=F(\zeta _L(s))+a\zeta _L(\alpha )-b\zeta _L(s)=a\big ({\tilde{F}}(\zeta _L(s))+\zeta _L(\alpha )\big ), \end{aligned}$$
where \({\tilde{F}}(r)=a^{-1}(F(r)-br)\). In a similar fashion to (4.1), we define
$$\begin{aligned}&{{\tilde{g}}}(r) := r^{1-{\alpha }/{s}}{{\tilde{F}}}'(r) =a^{-1}g(r)-\frac{b}{a}r^{1-{\alpha }/{s}},\\&{{\tilde{h}}}(r) := {{\tilde{F}}}(r) -\frac{s}{\alpha } r {{\tilde{F}}}'(r)= a^{-1}h(r)-\frac{b}{a}\Big (1-\frac{s}{\alpha }\Big )r, \end{aligned}$$
where g and h are defined in (4.1). We first check that \({\tilde{g}}\) is strictly increasing on \({\tilde{I}}:= \lbrace {\tilde{F}}' < 0 \rbrace \). Indeed, since F (and hence \({{\tilde{F}}}\)) is convex and \(\alpha >s\), we get that
$$\begin{aligned}{{\tilde{g}}}'(r) = \left( 1-\frac{\alpha }{s}\right) r^{-{\alpha }/{s}}{{\tilde{F}}}'(r) + r^{1-{\alpha }/{s}}{{\tilde{F}}}''(r) \ge \left( 1-\frac{\alpha }{s}\right) r^{-{\alpha }/{s}}{{\tilde{F}}}'(r)>0\end{aligned}$$
for all \(r \in {\tilde{I}}\). Since by assumption \(g(\lbrace F' < 0 \rbrace ) = (-\infty ,0)\) and \({\tilde{I}} = \lbrace {\tilde{F}}'< 0 \rbrace \supset \lbrace {F}' < 0 \rbrace \), we find \({\tilde{g}}({\tilde{I}}) = (-\infty ,0)\). Eventually, \({\tilde{h}}\circ {\tilde{g}}^{-1}\) is strictly decreasing on \((-\infty ,0)\), as well. We can hence apply Theorem 4.1 and obtain the assertion. \(\square \)
Remark 5.3
As a consequence of Remark 4.2, the previous result can be applied to \(F(r)=r\log r\). Already for this F, in the case of a more general Lennard-Jones potential \(\phi (r)=ar^{-\alpha }-br^{-\beta }\), the equation for the critical points of \(\lambda \mapsto {\mathcal {E}}[\lambda L]\) for a fixed lattice L is
$$\begin{aligned} \log \lambda = \frac{a'}{b'}\lambda ^{s-\alpha }-\frac{d'}{b'}\lambda ^{s-\beta } + \frac{c'}{b'} \end{aligned}$$
for \(a'=\alpha a \zeta _L(\alpha )\), \(b' = s^2 \zeta _L(s)\), \(c' = s\zeta _L(s)(1+\log \zeta _L(s))\), and \(d'=\beta b \zeta _L(\beta )\). This is generically not solvable in closed form when \(s\ne \beta \), and makes the computation of \({\mathcal {E}}[\lambda ^{{\mathcal {E}}}_L L]\) more difficult. This is why we choose \(s = \beta \) in the above result.
Numerical investigation in 2d
We choose s as parameter and fix \(t=\gamma =a=b=1\), and \(\alpha =12\), \(\beta = 6\), i.e.,
$$\begin{aligned} F(r)=r\log r,\quad \rho (r)=r^{-s},\quad \phi (r)=\frac{1}{r^{12}}-\frac{1}{r^6}. \end{aligned}$$
(5.1)
We employ here a gradient descent method, which is rather computationally intensive. More precisely, we use the optimization routine optim of Scilab which is based on a quasi-Newton method. The gradient is analytically computed and, as the energy itself, well-approximated by a finite sum given by the first terms. Note that a more efficient numerical method will be amenable in Subsect. 5.2, as an effect of a different structure of the potentials. Numerically, we observe the following (see Fig. 3):
-
For \(s>s_1\), \(s_1\approx 5.14\), the triangular lattice \(\lambda _{{\mathsf {A}}_2}^{\mathcal {E}}{\mathsf {A}}_2\) is apparently the unique global minimizer of \({\mathcal {E}}\).
-
For \(s<s_1\), the energy does not seem to have a global minimizer.
Furthermore, for \(s>s_0\), \(s_0\approx 5.09\), we have checked (see Fig. 4) that
$$\begin{aligned} \min _\lambda {\mathcal {E}}[\lambda {\mathbb {Z}}^2]= {\mathcal {E}}[\lambda _{{\mathbb {Z}}^2}^{\mathcal {E}}{\mathbb {Z}}^2]>{\mathcal {E}}[\lambda _{{\mathsf {A}}_2}^{\mathcal {E}}{\mathsf {A}}_2]=\min _\lambda {\mathcal {E}}[\lambda {\mathsf {A}}_2], \end{aligned}$$
whereas the inequality is reversed if \(s<s_0\).
We now replace \( \rho \) by a Gaussian function (Fig. 5). Namely, we consider the case
$$\begin{aligned} F(r)=r\log r,\quad \rho (r)=e^{-\delta r^2},\quad \phi (r)=\frac{1}{r^{12}}-\frac{1}{r^6}. \end{aligned}$$
(5.2)
In this case, the triangular lattice \(\lambda _{{\mathsf {A}}_2}^{\mathcal {E}}{\mathsf {A}}_2\) still seems to be minimizing \({\mathcal {E}}\) for large \(\delta \), see Fig. 6. More precisely:
-
There exists \(\delta _0\approx 1.04\) such that, for \(\delta >\delta _0\), the triangular lattice \(\lambda _{{\mathsf {A}}_2}^{\mathcal {E}}{\mathsf {A}}_2\) is the global minimizer of \({\mathcal {E}}\) in \({\mathcal {L}}_2\).
-
For \(\delta <\delta _0\), the global minimizer of \({\mathcal {E}}\) seems to move (continuously) in \({\mathcal {D}}\) increasingly following the y-axis as \(\delta \) decreases to 0. For instance,
-
If \(\delta =1\), then the minimizer is \((0,y_1)\) where \(y_1\approx 1.014\).
-
If \(\delta =0.95\), then the minimizer is \((0,y_{0.95})\) where \(y_{0.95}\approx 1.665\).
-
Furthermore, we have checked that, for \(\delta >\delta _0\),
$$\begin{aligned}\min _\lambda {\mathcal {E}}[\lambda {\mathbb {Z}}^2]= {\mathcal {E}}[\lambda _{{\mathbb {Z}}^2}^{\mathcal {E}}{\mathbb {Z}}^2]>{\mathcal {E}}[\lambda _{{\mathsf {A}}_2}^{\mathcal {E}}{\mathsf {A}}_2]=\min _\lambda {\mathcal {E}}[\lambda {\mathsf {A}}_2], \end{aligned}$$
whereas the inequality is reversed if \(\delta <\delta _0\) (see Fig. 5).
Numerical investigation in 3d
Let us go back to case (5.1), now in three dimensions. We investigate the difference of energies between the Simple Cubic (SC), Face-Centered Cubic (FCC), and Body-Centered Cubic (BCC) lattices, namely \({\mathbb {Z}}^3, {\mathsf {D}}_3, {\mathsf {D}}_3^*\), as s increases. Examples of FCC and BCC metals are Al, Cu, Ag, Au, Ni, Pd, Pt, and Nb, Cr, V, Fe, respectively [36]. Po is the only metal crystallizing in a SC structure [32].
Before giving our numerical results, let us remark that the lattices \({\mathbb {Z}}^3\), \({\mathsf {D}}_3\), and \({\mathsf {D}}_3^*\) are critical points of \({\mathcal {E}}\) in \({\mathcal {L}}_3(1)\). Moreover, recall the following conjectures:
-
Sarnak–Strombergsson’s conjecture (see [31, Eq. (44)]): for all \(s \ge 3/2\) (and in particular for \(s>3\), so that \(r \mapsto r^{-s} \in {\mathcal {S}}_3^+\)), \({\mathsf {D}}_3\) is the unique minimizer of \(L\mapsto \zeta _L(s)\) in \({\mathcal {L}}_3(1)\).
-
The global minimizer of the Lennard-Jones energy \(E_\phi \) is \(\lambda _{{\mathsf {D}}_3}^\phi {\mathsf {D}}_3\) (see, e.g., [39, Fig. 5] and [6, Conjecture 1.7]).
We have numerically studied the following function
$$\begin{aligned} s\mapsto \min _{\lambda >0} {\mathcal {E}}[\lambda L],\quad L\in \{{\mathsf {D}}_3,{\mathsf {D}}_3^*,{\mathbb {Z}}^3 \} \end{aligned}$$
for \(s>3\), see Fig. 7. We have found that there exist \(s_0< s_1<s_2\) where \(s_0\approx 5.4985\), \(s_1\approx 5.576\), and \(s_2\approx 5.584\) such that
-
For \(s\in (3,s_0)\), \( \min _{\lambda>0} {\mathcal {E}}[\lambda {\mathbb {Z}}^3]<\min _{\lambda>0} {\mathcal {E}}[\lambda {\mathsf {D}}_3^*]<\min _{\lambda >0} {\mathcal {E}}[\lambda {\mathsf {D}}_3]\);
-
For \(s\in (s_0,s_1)\), \(\min _{\lambda>0} {\mathcal {E}}[\lambda {\mathbb {Z}}^3]<\min _{\lambda>0} {\mathcal {E}}[\lambda {\mathsf {D}}_3]<\min _{\lambda >0} {\mathcal {E}}[\lambda {\mathsf {D}}_3^*]\);
-
For \(s\in (s_1,s_2)\), \(\min _{\lambda>0} {\mathcal {E}}[\lambda {\mathsf {D}}_3]<\min _{\lambda>0} {\mathcal {E}}[\lambda {\mathbb {Z}}^3]<\min _{\lambda >0} {\mathcal {E}}[\lambda {\mathsf {D}}_3^*]\);
-
For \(s>s_2\), \( \min _{\lambda>0} {\mathcal {E}}[\lambda {\mathsf {D}}_3]<\min _{\lambda>0} {\mathcal {E}}[\lambda {\mathsf {D}}_3^*]<\min _{\lambda >0} {\mathcal {E}}[\lambda {\mathbb {Z}}^3]\).
It is remarkable that for small values of s the simple cubic lattice \({\mathbb {Z}}^3\) has lower energy with respect to the usually energetically favored \({\mathsf {D}}_3\) and \({\mathsf {D}}_3^*\).
Consider now the Gaussian case (5.2) in three dimensions. The total energy then reads
$$\begin{aligned} {\mathcal {E}}[L]:=\theta _L(\delta ) \log \theta _L(\delta ) + \zeta _L(12)-\zeta _L(6), \quad \text {where}\quad \theta _L(\delta ):=\sum _{p\in L\backslash \{0\}} e^{-\delta |p|^2}. \end{aligned}$$
In the following, we will call \(\theta _L(\delta )\) the lattice theta function with parameter \(\delta >0\). Note however that under this name one usually refers to such sum including the term for \(p=0\) and with weight \(e^{-\delta \pi |p|^2}\).
We recall the following conjectures:
-
Sarnak–Strombergsson’s conjecture (see [31, Eq. (43)]): if \(\delta <\pi \), then \({\mathsf {D}}_3^*\) minimizes \(L\mapsto \theta _L(\delta )\) in \({\mathcal {L}}_3(1)\). If \(\delta >\pi \), then \({\mathsf {D}}_3\) minimizes the same lattice theta function in \({\mathcal {L}}_3(1)\) (with a coexistence phase around \(\pi \) actually).
-
As mentioned before, the unique minimizer of the Lennard-Jones energy \(E_\phi \) in \({\mathcal {L}}_3\) is \(\lambda _{{\mathsf {D}}_3}^\phi {\mathsf {D}}_3\) (see, e.g., [6] and [39, Fig. 5]).
In Fig. 8 we plot the functions \(\delta \mapsto \min _{\lambda >0} {\mathcal {E}}[\lambda L]\) for \(L\in \{{\mathsf {D}}_3,{\mathsf {D}}_3^*,{\mathbb {Z}}^3 \}\). We numerically observe that there exist \(0<\delta _1< \delta _2<\delta _3\), where \(\delta _1\approx 1.13\), \(\delta _2\approx 1.21\), and \(\delta _3\approx 1.223\) such that
-
for all \(\delta \in (0, \delta _1)\), \( \min _{\lambda>0} {\mathcal {E}}[\lambda {\mathbb {Z}}^3]<\min _{\lambda>0} {\mathcal {E}}[\lambda {\mathsf {D}}_3^*]<\min _{\lambda >0} {\mathcal {E}}[\lambda {\mathsf {D}}_3]\);
-
for all \(\delta \in (\delta _1,\delta _2)\), \( \min _{\lambda>0} {\mathcal {E}}[\lambda {\mathbb {Z}}^3]<\min _{\lambda>0} {\mathcal {E}}[\lambda {\mathsf {D}}_3]<\min _{\lambda >0} {\mathcal {E}}[\lambda {\mathsf {D}}_3^*]\);
-
for all \(\delta \in (\delta _2,\delta _3)\), \( \min _{\lambda>0} {\mathcal {E}}[\lambda {\mathsf {D}}_3]<\min _{\lambda>0} {\mathcal {E}}[\lambda {\mathbb {Z}}^3]<\min _{\lambda >0} {\mathcal {E}}[\lambda {\mathsf {D}}_3^*]\);
-
for all \(\delta >\delta _3\), \( \min _{\lambda>0} {\mathcal {E}}[\lambda {\mathsf {D}}_3]<\min _{\lambda>0} {\mathcal {E}}[\lambda {\mathsf {D}}_3^*]<\min _{\lambda >0} {\mathcal {E}}[\lambda {\mathbb {Z}}^3]\).
It is indeed important that the EAM energy favors \({\mathsf {D}}_3\) or \({\mathsf {D}}_3^*\) for some specific choice of parameters. In fact, FCC and BCC lattices are commonly emerging in metals. It is also remarkable that the simple cubic lattice \({\mathbb {Z}}^3\) (up to rescaling) is favored with respect to \({\mathsf {D}}_3\) or \({\mathsf {D}}_3^*\) for some other choice of parameters. In [6], we were able to identify a range of densities such that cubic lattices are locally optimal at fixed density, but it is the first time—according to our knowledge—that such phenomenon is observed at the level of the global minimizer.
The power-law case \(F(r)=r^t\)
In this subsection, we study the case where \(F(r)=r^t\), \(t>0\). Although F is not a single-minimum potential, this case turns out to be mathematically interesting. Indeed, we are able to present a special case where we can explicitly compute \(\min _\lambda {\mathcal {E}}[\lambda L]\) for any \(L\in {\mathcal {L}}_d(1)\). As we have seen above, this dimension reduction is extremely helpful when one looks for the ground state of \({\mathcal {E}}\) in \({\mathcal {L}}_d\), especially for \(d=2\), since we can plot \(L\mapsto \min _\lambda {\mathcal {E}}[\lambda L]\) in the fundamental domain \({\mathcal {D}}\).
A special power-law case
Let us now assume that
$$\begin{aligned} F(r)=r^t, \quad \rho (r)=r^{-s}, \quad \phi (r)=ar^{-\alpha }- br^{-\beta }, \end{aligned}$$
for \(t>0\), \(s>d\), \(\alpha>\beta >d\), and \(a,\,b>0\). Therefore, by (2.3) we have, for any \(\lambda >0\) and any \(L\in {\mathcal {L}}_d(1)\), that
$$\begin{aligned} {\mathcal {E}}[\lambda L]=\lambda ^{-st}\zeta _L(s)^t + a\lambda ^{-\alpha } \zeta _L(\alpha )-b\lambda ^{-\beta } \zeta _L(\beta ). \end{aligned}$$
For a fixed lattice L, the critical points of \(\lambda \mapsto {\mathcal {E}}[\lambda L]\) are the solutions of the following equation
$$\begin{aligned} b \beta \zeta _L(\beta ) \lambda ^{st+\alpha }-st \zeta _L(s)^t \lambda ^{\alpha +\beta }-a\alpha \zeta _L(\alpha ) \lambda ^{st+\beta }=0. \end{aligned}$$
(5.3)
Solving this equation in closed form is impracticable out of a discrete set of parameter values. Correspondingly, comparing energy values is even more complicated than in the pure Lennard-Jones-type case, which is already challenging when treated in whole generality.
Having pointed out this difficulty, we now focus on some additional specifications of the parameters, allowing to proceed further with the analysis. We have the following.
Theorem 5.4
(Special power-law case) Let \(\alpha ,\beta , s\), and t such that
$$\begin{aligned} d<s, \quad d<\beta< st < \alpha , \quad \text {and}\quad \alpha =2st-\beta . \end{aligned}$$
(5.4)
Then, \(\lambda ^{\mathcal {E}}_{L}\) exists for all \(L \in {\mathcal {L}}_d(1)\). Moreover, \(\lambda ^{\mathcal {E}}_{L_d}L_d\) is a global minimizer in \({\mathcal {L}}_d\) of \({\mathcal {E}}\), now reading
$$\begin{aligned} {\mathcal {E}}[L]=\zeta _L(s)^t + a\zeta _L(\alpha )-b\zeta _L(\beta ), \end{aligned}$$
if and only if \(L_d\) is a minimizer in \({\mathcal {L}}_d(1)\) of
$$\begin{aligned} e_*(L):&=-\frac{ \displaystyle C_1 \frac{\zeta _L(s)^{2t}}{\zeta _L(\beta )}+C_2\zeta _L(s)^t\sqrt{c_1 \frac{\zeta _L(s)^{2t}}{\zeta _L(\beta )^2} + c_2 \frac{\zeta _L(\alpha )}{\zeta _L(\beta )}}+ C_3 \zeta _L(\alpha )}{\displaystyle \left( \sqrt{c_1} \frac{\zeta _L(s)^t}{\zeta _L(\beta )}+ \sqrt{c_1 \frac{\zeta _L(s)^{2t}}{\zeta _L(\beta )^2} + c_2 \frac{\zeta _L(\alpha )}{\zeta _L(\beta )}} \right) ^{\frac{\alpha }{\alpha -st}}}, \end{aligned}$$
where \(C_i, c_j\), \(i\in \{1,2,3\}\), \(j\in \{1,2\}\), are positive constants defined by
$$\begin{aligned}&C_1:=\frac{st}{2b \beta }\left( \frac{st}{\beta }-1 \right) ,\quad C_2:=\frac{st}{\beta }-1 ,\quad C_3:=a\left( \frac{\alpha }{\beta }-1\right) ,\nonumber \\&c_1:=\frac{s^2 t^2}{4 b^2 \beta ^2},\quad c_2:=\frac{a\alpha }{b\beta }. \end{aligned}$$
(5.5)
Proof
For any \(L\in {\mathcal {L}}_d(1)\), any critical point of \(\lambda \mapsto {\mathcal {E}}[\lambda L]\) satisfies (see (5.3))
$$\begin{aligned} \lambda ^{st+\beta }\left( b\beta \zeta _L(\beta )\lambda ^{\alpha -\beta } - st\zeta _L(s)^t \lambda ^{\alpha -st}-a\alpha \zeta _L(\alpha ) \right) =0. \end{aligned}$$
Since \(\lambda >0\), by writing \(X=\lambda ^{\alpha -st}\) and using (5.4) we want to solve
$$\begin{aligned} b\beta \zeta _L(\beta )X^2 - st\zeta _L(s)^t X-a\alpha \zeta _L(\alpha )=0,\quad X>0, \end{aligned}$$
for which the unique solution is
$$\begin{aligned} X=\frac{st \zeta _L(s)^t + \sqrt{s^2 t^2 \zeta _L(s)^{2t} + 4a b \alpha \beta \zeta _L(\alpha )\zeta _L(\beta )}}{2 b \beta \zeta _L(\beta )}. \end{aligned}$$
Since \(\alpha -st >0\) and \(b\beta \zeta _L(\beta )>0\), we find that the critical point is a minimizer and thus coincides with \(\lambda ^{{\mathcal {E}}}_L\) defined in (2.6). More precisely, we have
$$\begin{aligned} \lambda ^{{\mathcal {E}}}_L= \left( \frac{st \zeta _L(s)^t + \sqrt{s^2 t^2 \zeta _L(s)^{2t} + 4a b \alpha \beta \zeta _L(\alpha )\zeta _L(\beta )}}{2 b \beta \zeta _L(\beta )} \right) ^{\frac{1}{\alpha -st}}. \end{aligned}$$
We hence get, for any \(L\in {\mathcal {L}}_d(1)\), that
$$\begin{aligned}&\min _\lambda {\mathcal {E}}[\lambda L]={\mathcal {E}}[\lambda ^{{\mathcal {E}}}_L L]\\&=(\lambda ^{{\mathcal {E}}}_L)^{-st}\zeta _L(s)^t + a(\lambda ^{{\mathcal {E}}}_L)^{-\alpha } \zeta _L(\alpha )-b(\lambda ^{{\mathcal {E}}}_L)^{-\beta } \zeta _L(\beta )\\&=(\lambda ^{{\mathcal {E}}}_L)^{-\alpha }\left\{ \zeta _L(s)^t (\lambda ^{{\mathcal {E}}}_L)^{\alpha -st} - b\zeta _L(\beta )(\lambda ^{{\mathcal {E}}}_L)^{\alpha -\beta }+a\zeta _L(\alpha ) \right\} \\&= (\lambda ^{{\mathcal {E}}}_L)^{-\alpha }\left\{ \zeta _L(s)^t (\lambda ^{{\mathcal {E}}}_L)^{\alpha -st} - \frac{st\zeta _L(s)^t (\lambda ^{{\mathcal {E}}}_L)^{\alpha -st}+a\alpha \zeta _L(\alpha )}{\beta }+a\zeta _L(\alpha ) \right\} \\&=(\lambda ^{{\mathcal {E}}}_L)^{-\alpha }\left\{ \zeta _L(s)^t\left( 1-\frac{st}{\beta } \right) (\lambda ^{{\mathcal {E}}}_L)^{\alpha -st} + a\zeta _L(\alpha )\left( 1- \frac{\alpha }{\beta }\right) \right\} \\&=(\lambda ^{{\mathcal {E}}}_L)^{-\alpha }\left\{ \zeta _L(s)^t\left( 1-\frac{st}{\beta } \right) \left( \frac{st \zeta _L(s)^t + \sqrt{s^2 t^2 \zeta _L(s)^{2t} + 4a b \alpha \beta \zeta _L(\alpha )\zeta _L(\beta )}}{2 b \beta \zeta _L(\beta )} \right) \right. \\&\left. \quad + a\zeta _L(\alpha )\left( 1- \frac{\alpha }{\beta }\right) \right\} \\&=(\lambda ^{{\mathcal {E}}}_L)^{-\alpha }\left\{ \frac{st}{2 b\beta }\left( 1-\frac{st}{\beta } \right) \frac{\zeta _L(s)^{2t}}{\zeta _L(\beta )}+ \left( 1-\frac{st}{\beta } \right) \zeta _L(s)^t\right. \\&\left. \quad \times \sqrt{\frac{s^2 t^2 \zeta _L(s)^{2t}}{4 b^2 \beta ^2 \zeta _L(\beta )^2} + \frac{a\alpha \zeta _L(\alpha )}{b \beta \zeta _L(\beta )}} + a\left( 1- \frac{\alpha }{\beta }\right) \zeta _L(\alpha )\right\} , \end{aligned}$$
where in the fourth line we have used the fact that \(\lambda ^{{\mathcal {E}}}_L\) is a critical point of \(\lambda \mapsto {\mathcal {E}}[\lambda L]\), i.e., \(b\beta \zeta _L(\beta )(\lambda ^{{\mathcal {E}}}_L)^{\alpha -\beta } - st\zeta _L(s)^t (\lambda ^{{\mathcal {E}}}_L)^{\alpha -st}-a\alpha \zeta _L(\alpha ) =0\). Note that by assumption we have
$$\begin{aligned} 1-\frac{st}{ \beta }<0,\quad 1-\frac{\alpha }{\beta }<0. \end{aligned}$$
It follows that, defining the positive constants \(C_i,c_j\), \(i\in \{1,2,3\}\), \(j\in \{1,2\}\), as in (5.5), that
$$\begin{aligned} \min _\lambda {\mathcal {E}}[\lambda L]&= -(\lambda ^{{\mathcal {E}}}_L)^{-\alpha }\left\{ \!C_1 \frac{\zeta _L(s)^{2t}}{\zeta _L(\beta )}+C_2\zeta _L(s)^t\sqrt{c_1 \frac{\zeta _L(s)^{2t}}{\zeta _L(\beta )^2} + c_2 \frac{\zeta _L(\alpha )}{\zeta _L(\beta )}}+ C_3 \zeta _L(\alpha )\! \right\} \\&=- \frac{ \displaystyle C_1 \frac{\zeta _L(s)^{2t}}{\zeta _L(\beta )}+C_2\zeta _L(s)^t\sqrt{c_1 \frac{\zeta _L(s)^{2t}}{\zeta _L(\beta )^2} + c_2 \frac{\zeta _L(\alpha )}{\zeta _L(\beta )}}+ C_3 \zeta _L(\alpha )}{\displaystyle \left( \sqrt{c_1} \frac{\zeta _L(s)^t}{\zeta _L(\beta )}+ \sqrt{c_1 \frac{\zeta _L(s)^{2t}}{\zeta _L(\beta )^2} + c_2 \frac{\zeta _L(\alpha )}{\zeta _L(\beta )}} \right) ^{\frac{\alpha }{\alpha -st}}}, \end{aligned}$$
which completes the proof. \(\square \)
Numerical investigations of the special power-law case in 2d and 3d
We let \(t\in (0,9/d)\) vary and fix
$$\begin{aligned} a=b=1,\quad \alpha =12,\quad \beta =6,\quad s=9/t, \end{aligned}$$
so that
$$\begin{aligned} F(r)=r^t,\quad \rho (r)=r^{-{9}/{t}},\quad \phi (r)=\frac{1}{r^{12}}-\frac{1}{r^6}. \end{aligned}$$
(5.6)
Note that (5.4) holds under these assumptions. In two dimensions, by testing as \(t\in (0,4.5)\) increases, we observe numerically the following:
-
If \(t\in (0, t_1)\), \(t_1\approx 1.605\), then \({\mathsf {A}}_2\) minimizes \(e_*\) (see Figs. 9 and 10);
-
If \(t\in (t_1,t_2)\), where \(t_2\approx 1.633\), then \({\mathbb {Z}}^2\) is a local minimizer of \(e_*\) but there seems to be no minimizer for \(e_*\) (see Fig. 11);
-
if \(t\in (t_2,4.5)\), there seems to be no minimizer for \(e_*\), and \({\mathbb {Z}}^2\) is a saddle point (see Fig. 12).
Similarly to the discussion of Subsect. 5.1, for some choice of parameters, a square lattice seems to be locally minimizing the EAM energy, at least within the range of our numerical testing. In [5], we have identified a range of densities for which a square lattice is optimal at fixed density. This seems however to be the first occurrence of such minimality among all possible lattices, without a density constraint. Indeed, when minimizing among all lattices, the square lattice \({\mathbb {Z}}^2\) usually happens to be a saddle point, see, e.g., Fig. 1 for the Lennard-Jones case.
We have numerically investigated the three-dimensional case as well, comparing the energies of \(L\in \{{\mathbb {Z}}^3, {\mathsf {D}}_3, {\mathsf {D}}_3^*\}\). Figure 13 illustrates the numerical results. We observe that there exist \(t_1, t_2, t_3\), where \(t_1\approx 1.5505\), \(t_2\approx 1.5515\), and \(t_3\approx 1.5647\) such that:
-
If \(t\in (0,t_1)\), \(e_*({\mathsf {D}}_3)<e_*({\mathsf {D}}_3^*)<e_*({\mathbb {Z}}^3)\);
-
If \(t\in (t_1,t_2)\), \(e_*({\mathsf {D}}_3)<e_*({\mathbb {Z}}^3)<e_*({\mathsf {D}}_3^*)\);
-
If \(t\in (t_2,t_3)\), \(e_*({\mathbb {Z}}^3)<e_*({\mathsf {D}}_3)<e_*({\mathsf {D}}_3^*)\);
-
If \(t\in (t_3,3)\), \(e_*({\mathbb {Z}}^3)<e_*({\mathsf {D}}_3^*)<e_*({\mathsf {D}}_3)\).
When \(t\rightarrow 0\), since \(s=9/t\rightarrow \infty \) and \(r^t\rightarrow 1\) for fixed \(r>0\), it is expected that the global minimizer of \({\mathcal {E}}\) in \({\mathcal {L}}_3\) converges to the one of \(E_\phi \), which in turn is expected to be a FCC lattice. This is supported by our numerics for \(t<t_1\).