Skip to main content
Log in

The Fermi gerbe of Weyl semimetals

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

In the gap topology, the unbounded self-adjoint Fredholm operators on a Hilbert space have third homotopy group the integers. We realise the generator explicitly, using a family of Dirac operators on the half-line, which arises naturally in Weyl semimetals in solid-state physics. A “Fermi gerbe” geometrically encodes how discrete spectral data of the family interpolate between essential spectral gaps. Its non-vanishing Dixmier–Douady invariant protects the integrity of the interpolation, thereby providing topological protection of the Weyl semimetal’s Fermi surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. With minor relabelling, our convention here matches Eq. 5.1 of [3], and Eq. 4.2 of [18].

  2. For the real/imaginary decomposition of the quaternion \(q=q_r+i\varvec{q}\cdot \varvec{\sigma }\) (see Appendix A ) of Eq. (8), we have \(q_r=p_1\), and \(\varvec{q}=(p_4,-p_3,p_2)\).

References

  1. Armitage, N.P., Mele, E.J., Vishwanath, A.: Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90(1), 015001 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  2. Atiyah, M.F., Singer, I.M.: Index theory for skew-adjoint Fredholm operators. Inst. Hautes Études Sci. Publ. Math. 37, 5–26 (1969)

    Article  MathSciNet  Google Scholar 

  3. Avron, J.E., Sadun, L., Segert, J., Simon, B.: Chern numbers, quaternions, and Berry’s phases in Fermi systems. Commun. Math. Phys. 124, 595–627 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  4. Booss-Bavnbek, B., Lesch, M., Phillips, J.: Unbounded Fredholm operators and spectral flow. Can. J. Math. 57(2), 225–250 (2005)

    Article  MathSciNet  Google Scholar 

  5. Brylinski, J.-L.: Loop Spaces, Characteristic Classes and Geometric Quantization. Birkhäuser, Boston-Basel-Berlin (1993)

    Book  Google Scholar 

  6. Carey, A.L., Johnson, S., Murray, M.K.: Holonomy on D-branes. J. Geom. Phys. 52(2), 186–216 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  7. Carey, A.L., Mickelsson, J.: The universal gerbe, Dixmier-Douady class, and gauge theory. Lett. Math. Phys. 59, 47–60 (2002)

    Article  MathSciNet  Google Scholar 

  8. Carey, A.L., Murray, M.K., Mickelsson, J.: Index theory, gerbes, and Hamiltonian quantization. Commun. Math. Phys. 183, 707–722 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  9. Carey, A.L., Murray, M.K.: Faddeev’s anomaly and bundle gerbes. Lett. Math. Phys. 37, 29–36 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  10. Carey, A.L., Mickelsson, J., Murray, M.K.: Bundle gerbes applied to quantum field theory. Rev. Math. Phys. 12(01), 65–90 (2000)

    Article  MathSciNet  Google Scholar 

  11. Gawȩdzki, K.: Square root of gerbe holonomy and invariants of time-reversal-symmetric topological insulators. J. Geom. Phys. 120, 169–191 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  12. Gomi, K., Tauber, C.: Eigenvalue crossings in Floquet topological systems. Lett. Math. Phys. 110, 465–500 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  13. Gomi, K., Thiang, G.C.: Real’ gerbes and Dirac cones of topological insulators. arXiv:2103.05350

  14. Hashimoto, K., Wu, X., Kimura, T.: Edge states at an intersection of edges of a topological material. Phys. Rev. B 95, 165443 (2017)

    Article  ADS  Google Scholar 

  15. Hitchin, N.: Lectures on special Lagrangian submanifolds. In: Vafa, C., Yau, S.-T. (eds.) Winter School on Mirror Symmetry, Vector Bundles and Lagrangian Submanifolds, vol. 23 of AMS/IP Stud. Adv. Math., pp. 151–182. Amer. Math. Soc., Providence, RI (2001)

  16. Joachim, M.: Unbounded Fredholm operators and \(K\)-theory. In: Farrell, F.T., Lück, W. (eds.) High-dimensional manifold topology, pp. 177–199. World Sci. Publishing (2003)

  17. Lawson, B., Michelsohn, M.: Spin Geometry. Princeton University Press, Princeton (1989)

    MATH  Google Scholar 

  18. Mathai, V., Thiang, G.C.: Differential topology of semimetals. Commun. Math. Phys. 355, 561–602 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  19. Murray, M.K.: Bundle gerbes. J. Lond. Math. Soc. 2(54), 403–416 (1996)

    Article  MathSciNet  Google Scholar 

  20. Murray, M.K., Stevenson, D.: Bundle gerbes: stable isomorphism and local theory. J. Lond. Math. Soc. 62(3), 925–937 (2000)

    Article  MathSciNet  Google Scholar 

  21. Ozawa, T., Price, H.M.: Topological quantum matter in synthetic dimensions. Nat. Rev. Phys. 1, 349–357 (2019)

    Article  Google Scholar 

  22. Palumbo, G., Goldman, N.: Revealing tensor monopoles through quantum-metric measurements. Phys. Rev. Lett. 121, 170401 (2018)

    Article  ADS  Google Scholar 

  23. Phillips, J.: Self-adjoint Fredholm operators and spectral flow. Can. Math. Bull. 39(4), 460–467 (1996)

    Article  MathSciNet  Google Scholar 

  24. Pressley, A., Segal, G.: Loop Groups. Clarendon Press, Oxford (1986)

    MATH  Google Scholar 

  25. Reed, M., Simon, B.: Methods of Mathematical Physics, vol. I. Academic Press, Cambridge (1980)

    MATH  Google Scholar 

  26. Reed, M., Simon, B.: Methods of Mathematical Physics, vol. II. Academic Press, Cambridge (1975)

    MATH  Google Scholar 

  27. Tan, X., et al.: Experimental observation of tensor monopoles with a superconducting qudit. Phys. Rev. Lett. 126, 017702 (2021)

    Article  ADS  Google Scholar 

  28. Thiang, G.C.: On spectral flow and Fermi arcs. Commun. Math. Phys. (2021). https://doi.org/10.1007/s00220-021-04007-z

  29. Viennot, D.: Geometric phases in adiabatic Floquet theory, Abelian gerbes and Cheon’s anholonomy. J. Phys. A Math. Theor. 42, 395302 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

A.C. thanks U. C. Emir, while G.C.T. thanks M. Ludewig for helpful discussions and the University of Adelaide for hosting him as a visitor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo Chuan Thiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

G.C.T. acknowledges support from Australian Research Council Grant DP200100729.

A Quaternion conventions

A Quaternion conventions

The quaternion algebra \({\mathbb {H}}\) is generated by three anticommuting square roots of \(-1\), labelled IJK. It can be represented with \(2\times 2\) complex matrices, e.g.

$$\begin{aligned} {\mathbb {H}}\ni q=\underbrace{q_r}_{\mathrm{Re}(q)}+\underbrace{bI+cJ+dK}_{i\cdot \mathrm{Im}(q)} \longleftrightarrow \begin{pmatrix} q_r+ib &{} -c-id \\ c-id &{} q_r-ib \end{pmatrix}. \end{aligned}$$
(10)

In terms of Pauli matrices, Eq. (5), the imaginary part of q is \(\mathrm{Im}(q)=\varvec{q}\cdot \varvec{\sigma }\equiv \sum _{j=1}^3 q_j\sigma _j\), where \(\varvec{q}=(-d,-c,b)\).

Quaternion conjugation \(q\mapsto {\overline{q}}=q_r-i\varvec{q}\cdot \varvec{\sigma }\) corresponds to the Hermitian adjoint in this representation. The norm is given by \(|q|^2=q{\overline{q}}={\overline{q}}q=q_r^2+|\varvec{q}|^2\), and the 3-sphere of unit quaternions is then identified with \(\mathrm{SU}(2)\). On \({\mathbb {C}}^2\), there is a standard quaternionic structure given by the operator \(\Theta =-i\sigma _2\circ \kappa \) (where \(\kappa \) denotes complex conjugation), which is antiunitary, squares to \(-1\), and commutes with the left multiplication by q in Eq. (10). In physics, \(\Theta \) may be interpreted as a fermionic time-reversal operator. A quaternionic basis vector for \({\mathbb {C}}^2\) is a vector \({\mathsf {e}}\) such that \(\{{\mathsf {e}},\Theta {\mathsf {e}}\}\) is an orthonormal basis (over \({\mathbb {C}}\)) for \({\mathbb {C}}^2\). It allows us to view \({\mathbb {C}}^2\) as a quaternionic vector space on which \(i,\Theta \) generate the (right) quaternionic scalar multiplication, and also to identify \(\mathrm{SU}(2)\cong \mathrm{Sp}(1)\). Similarly, a quaternionic structure on \({\mathbb {C}}^{2n}\) is an antiunitary squaring to \(-1\), and a quaternionic basis \(\{{\mathsf {e}}_j\}_{j=1}^n\) gives an identification \({\mathbb {C}}^{2n}\cong {\mathbb {H}}^n\). One should not confuse the role of \({\mathbb {H}}\subset M_2({\mathbb {C}})\) as an algebra of operators, and as a vector space \({\mathbb {H}}\cong {\mathbb {C}}^2\).

1.1 B Bundle gerbes

Bundle gerbes are, in a sense, a generalisation of line bundles. We recall the local description of bundle gerbes and refer to [15, 19, 20] for detailed treatments. Let \({\mathcal {U}}=\{U_i\}_{i\in I}\) be an open cover of X. The data of a bundle gerbe over X comprise, for each pair \(U_i, U_j\in {\mathcal {U}}\), a Hermitian line bundle \({\mathcal {L}}_{ij}\) over \(U_i\cap U_j\). It is assumed that \({\mathcal {L}}_{ii}\) is trivial for each \(i\in I\) and that on each triple overlap \(U_i\cap U_j\cap U_k\), there is a unitary isomorphism \(\phi _{ijk}:{\mathcal {L}}_{ij} \otimes {\mathcal {L}}_{jk}\rightarrow {\mathcal {L}}_{ik}\) such that “associativity” holds on quadruple overlaps \(U_i\cap U_j\cap U_k\cap U_l\),

In particular, \({\mathcal {L}}_{ij}\cong {\mathcal {L}}_{ji}^*\). The isomorphisms \(\phi _{ijk}\) may be specified by a Čech 2-cocycle, and define (after passing to refinements) a cohomology class in \(H^3(X,{\mathbb {Z}})\) called the Dixmier–Douady invariant of the bundle gerbe. It is the analogue for bundle gerbes of the Chern class of a line bundle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carey, A., Thiang, G.C. The Fermi gerbe of Weyl semimetals. Lett Math Phys 111, 72 (2021). https://doi.org/10.1007/s11005-021-01414-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-021-01414-0

Keywords

Mathematics Subject Classification

Navigation