Skip to main content
Log in

Degenerate band edges in periodic quantum graphs

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Edges of bands of continuous spectrum of periodic structures arise as maxima and minima of the dispersion relation of their Floquet–Bloch transform. It is often assumed that the extrema generating the band edges are non-degenerate. This paper constructs a family of examples of \({\mathbb {Z}}^3\)-periodic quantum graphs where the non-degeneracy assumption fails: the maximum of the first band is achieved along an algebraic curve of co-dimension 2. The example is robust with respect to perturbations of edge lengths, vertex conditions and edge potentials. The simple idea behind the construction allows generalizations to more complicated graphs and lattice dimensions. The curves along which extrema are achieved have a natural interpretation as moduli spaces of planar polygons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. These features are also called “threshold effects” [13] whenever they depend only on the infinitesimal structure (e.g., a finite number of Taylor coefficients) of the dispersion relation at the spectral edges.

  2. This is a consequence of Barra–Gaspard ergodicity of quantum graphs: informally, what happens once for one choice of lengths will happen with finite frequency for almost all choices of lengths. For more precise statements, see [3, 5, 11, 16].

References

  1. Ashcroft, N.W., Mermin, N.D.: Solid State Physics. Holt, Rinehart and Winston, New York (1976)

    MATH  Google Scholar 

  2. Baez, J.: Topological crystals. Preprint arXiv:1607.07748 (2016)

  3. Band, R., Berkolaiko, G.: Universality of the momentum band density of periodic networks. Phys. Rev. Lett. 111(13), 130404 (2013)

    Article  ADS  Google Scholar 

  4. Band, R., Berkolaiko, G., Joyner, C. H., Liu, W.: Quotients of finite-dimensional operators by symmetry representations. Preprint arXiv:1711.00918 (2017)

  5. Barra, F., Gaspard, P.: On the level spacing distribution in quantum graphs. J. Stat. Phys. 101(1–2), 283–319 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Berkolaiko, G.: An Elementary Introduction to Quantum Graphs, Geometric and Computational Spectral Theory. Contemporary Mathematics, vol. 700, pp. 41–72. American Mathematical Society, Providence (2017)

    Book  MATH  Google Scholar 

  7. Berkolaiko, G., Comech, A.: Symmetry and Dirac points in graphene spectrum. J. Spectr. Theory 8(3), 1099–1147 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Berkolaiko, G., Kennedy, J.B., Kurasov, P., Mugnolo, D.: Surgery principles for the spectral analysis of quantum graphs. Trans. Am. Math. Soc. 372(7), 5153–97 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Berkolaiko, G., Kuchment, P.: Spectral Geometry. Dependence of the spectrum of a quantum graph on vertex conditions and edge lengths. In: Proceedings of Symposia in Pure Mathematics, vol. 84, American Mathematical Society (2012)

  10. Berkolaiko, G., Kuchment, P.: Introduction to Quantum Graphs. Mathematical Surveys and Monographs, vol. 186. American Mathematical Society, Providence, RI (2013)

    MATH  Google Scholar 

  11. Berkolaiko, G., Winn, B.: Relationship between scattering matrix and spectrum of quantum graphs. Trans. Am. Math. Soc. 362(12), 6261–6277 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Birman, M.S.: On the homogenization for periodic operators in a neighborhood of an edge of an internal gap. Algebra Anal. 15(4), 61–71 (2003)

    Google Scholar 

  13. Birman, M.S., Suslina, T.A.: Threshold effects near the lower edge of the spectrum for periodic differential operators of mathematical physics. In: Borichev, A.A., Nikolski, N.K. (eds.) Systems, Approximation, Singular Integral Operators, and Related Topics (Bordeaux, 2000). Operator Theory: Advances and Applications, vol. 129, pp. 71–107. Birkhäuser, Basel (2001)

    Chapter  Google Scholar 

  14. Birman, M. S., Suslina, T.A.: Homogenization of a multidimensional periodic elliptic operator in a neighborhood of an edge of an inner gap. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), Rossiĭskaya Akademiya Nauk. Sankt-Peterburgskoe Otdelenie. Matematicheskiĭ Institut im. V. A. Steklova. Zapiski Nauchnykh Seminarov (POMI), 318, Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 36 [35], 60–74, 309 (2004)

  15. Do, N., Kuchment, P., Sottile, F.: Generic properties of dispersion relations for discrete periodic operators. Preprint arXiv:1910.06472 (2019)

  16. Exner, P., Turek, O.: Periodic quantum graphs from the Bethe–Sommerfeld perspective. J. Phys. A. Math. Theor. 50(45), 455201–32 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Farber, M., Schütz, D.: Homology of planar polygon spaces. Geom. Dedicata 125, 75–92 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Filonov, N., Kachkovskiy, I.: On the structure of band edges of 2-dimensional periodic elliptic operators. Acta Math. 221(1), 59–80 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kapovich, M., Millson, J.: On the moduli space of polygons in the Euclidean plane. J. Differ. Geom. 42(1), 133–164 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kha, M.: Green’s function asymptotics of periodic elliptic operators on abelian coverings of compact manifolds. J. Funct. Anal. 274(2), 341–387 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kha, M., Kuchment, P., Raich, A.: Green’s function asymptotics near the internal edges of spectra of periodic elliptic operators. Spectral gap interior. J. Spectr. Theory 7(4), 1171–1233 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kirsch, W., Simon, B.: Comparison theorems for the gap of Schrödinger operators. J. Funct. Anal. 75(2), 396–410 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  23. Klopp, F., Ralston, J.: Endpoints of the spectrum of periodic operators are generically simple. Methods Appl. Anal. 7(3), 459–463 (2000)

    MathSciNet  MATH  Google Scholar 

  24. Kobayashi, T., Ono, K., Sunada, T.: Periodic Schrödinger operators on a manifold. Forum Math. 1(1), 69–79 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kostrykin, V., Schrader, R.: Quantum wires with magnetic fluxes. Commun. Math. Phys. 237(1–2), 161–179 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Kuchment, P.: Floquet Theory for Partial Differential Equations. Operator Theory: Advances and Applications, vol. 60. Birkhäuser Verlag, Basel (1993)

    Book  MATH  Google Scholar 

  27. Kuchment, P.: An overview of periodic elliptic operators. Bull. Am. Math. Soc. 53(3), 343–414 (2016). https://doi.org/10.1090/bull/1528

    Article  MathSciNet  MATH  Google Scholar 

  28. Kuchment, P., Pinchover, Y.: Integral representations and Liouville theorems for solutions of periodic elliptic equations. J. Funct. Anal. 181(2), 402–446 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kuchment, P., Pinchover, Y.: Liouville theorems and spectral edge behavior on abelian coverings of compact manifolds. Trans. Am. Math. Soc. 359(12), 5777–5815 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kuchment, P., Raich, A.: Green’s function asymptotics near the internal edges of spectra of periodic elliptic operators. Spectral edge case. Math. Nachr. 285(14–15), 1880–1894 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kuchment, P., Zhao, J.: Analyticity of the spectrum and Dirichlet-to-Neumann operator technique for quantum graphs. J. Math. Phys. 60(9), 093502–8 (2019). https://doi.org/10.1063/1.5110193

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Kurasov, P.: On the ground state for quantum graphs. Lett. Math. Phys. 109(11), 2491–2512 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Mugnolo, D.: Semigroup Methods for Evolution Equations on Networks. Understanding Complex Systems. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04621-1

    Book  MATH  Google Scholar 

  34. Parnovski, L., Shterenberg, R.: Perturbation theory for spectral gap edges of 2D periodic Schrödinger operators. J. Funct. Anal. 273(1), 444–470 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sunada, T.: Topological Crystallography: With a View Towards Discrete Geometric Analysis. Surveys and Tutorials in the Applied Mathematical Sciences, vol. 6. Springer, Tokyo (2013)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The work of the first author was partially supported by NSF DMS–1815075 Grant, and the work of the second author was partially supported by the AMS-Simons Travel Grant. Both authors express their gratitude to Peter Kuchment for introducing them to this exciting topic and to Lior Alon and Ram Band for many deep discussions. We thank an anonymous referee for several improving suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minh Kha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berkolaiko, G., Kha, M. Degenerate band edges in periodic quantum graphs. Lett Math Phys 110, 2965–2982 (2020). https://doi.org/10.1007/s11005-020-01312-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-020-01312-x

Keywords

Mathematics Subject Classification

Navigation