Skip to main content
Log in

Strong integrability of the bi-YB–WZ model

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We identify the r-matrix governing the Poisson brackets of the matrix elements of the Lax operator of the bi-YB–WZ model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This statement is true up to some zero modes subtleties.

  2. Actually, the action of the bi-YB–WZ model obtained in [30] coincides with the expression (2.1) upon the field redefinition replacing the group valued field m by its inverse.

  3. If it does depend on the phase space variables, it is called a dynamical r-matrix.

References

  1. Balog, J., Forgács, P., Horváth, Z., Palla, L.: A new family of \(SU(2)\) symmetric integrable \(\sigma \)-models. Phys. Lett. B 324, 403 (1994). arXiv:hep-th/9307030

    ADS  MathSciNet  Google Scholar 

  2. Bassi, C., Lacroix, S.: Integrable deformations of coupled -models. JHEP 05, 059 (2020). arXiv:1912.06157 [hep-th]

  3. Bazhanov, V.V., Kotousov, G.A., Lukyanov, S.L.: On the Yang–Baxter Poisson algebra in non-ultralocal integrable systems. Nucl. Phys. B 934, 529 (2018). arXiv:1805.07417 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  4. Borsato, R., Wulff, L.: Integrable deformations of T-dual \(\sigma \)-models. Phys. Rev. Lett. 117(25), 251602 (2016). arXiv:1609.09834 [hep-th]

    ADS  MathSciNet  Google Scholar 

  5. Bykov, D.: Complex structure-induced deformations of sigma models. J. High Energy Phys. 1703, 130 (2017). arXiv:1611.07116 [hep-th]

    ADS  MATH  Google Scholar 

  6. Cherednik, I.V.: Relativistically invariant quasiclassical limits of integrable two-dimensional quantum models. Theor. Math. Phys. 47, 422 (1981)

    Google Scholar 

  7. Demulder, S., Driezen, S., Sevrin, A., Thompson, D.: Classical and quantum aspects of Yang–Baxter Wess–Zumino models. J. High Energy Phys. 1803, 041 (2018). arXiv:1711.00084 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  8. Delduc, F., Hoare, B., Kameyama, T., Magro, M.: Combining the bi-Yang–Baxter deformation, the Wess–Zumino term and TsT transformations in one integrable \(\sigma \)-model. J. High Energy Phys. 1710, 212 (2017). arXiv:1707.08371 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  9. Delduc, F., Lacroix, S., Magro, M., Vicedo, B.: Integrable coupled sigma-models. Phys. Rev. Lett. 122, 041601 (2019). arXiv:1811.12316 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  10. Delduc, F., Lacroix, S., Magro, M., Vicedo, B.: Assembling integrable \(\sigma \)-models as affine Gaudin models. J. High Energy Phys. 06, 017 (2019). arXiv:1903.00368 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  11. Delduc, F., Lacroix, S., Magro, M., Vicedo, B.: On the Hamiltonian integrability of the bi-Yang–Baxter sigma-model. J. High Energy Phys. 1603, 104 (2016). arXiv:1512.02462 [hep-th]

    ADS  MATH  Google Scholar 

  12. Delduc, F., Magro, M., Vicedo, B.: On classical q-deformations of integrable sigma-models. J. High Energy Phys. 1311, 192 (2013). arXiv:1308.3581 [hep-th]

    ADS  MATH  Google Scholar 

  13. Delduc, F., Magro, M., Vicedo, B.: Integrable double deformation of the principal chiral model. Nucl. Phys. B 891, 312–321 (2015). arXiv:1410.8066 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  14. Fateev, V.A.: The sigma model (dual) representation for a two-parameter family of integrable quantum field theories. Nucl. Phys. B 473, 509 (1996)

    ADS  MathSciNet  MATH  Google Scholar 

  15. Fateev, V.A., Litvinov, A.V.: Integrability, duality and sigma models. J. High Energy Phys. 1811, 204 (2018). arXiv:1804.03399 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  16. Georgiou, G., Sfetsos, K.: A new class of integrable deformations of CFTs. J. High Energy Phys. 1703, 083 (2017). arXiv:1612.05012 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  17. Georgiou, G., Sfetsos, K.: The most general \(\lambda \)-deformation of CFTs and integrability. J. High Energy Phys. 1903, 094 (2019). arXiv:1812.04033 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  18. Georgiou, G., Sfetsos, K., Siampos, K.: Double and cyclic \(\lambda \)-deformations and their canonical equivalents. Phys. Lett. B 771, 576 (2017). arXiv:1704.07834 [hep-th]

    ADS  MATH  Google Scholar 

  19. Georgiou, G., Sfetsos, K., Siampos, K.: Strong integrability of \(\lambda \)-deformed models. Nucl. Phys. B 952, 114923 (2020). arXiv:1911.07859 [hep-th]

    MathSciNet  Google Scholar 

  20. Hoare, B., Tseytlin, A.A.: On integrable deformations of superstring sigma models related to \(AdS_n\times S^n\) supercosets. Nucl. Phys. B 897, 448 (2015). arXiv:1504.07213 [hep-th]

    ADS  MATH  Google Scholar 

  21. Hollowood, T.J., Miramontes, J.L., Schmidtt, D.M.: Integrable deformations of strings on symmetric spaces. J. High Energy Phys. 1411, 009 (2014). arXiv:1407.2840 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  22. Itsios, G., Sfetsos, K., Siampos, K., Torrielli, A.: The classical Yang–Baxter equation and the associated Yangian symmetry of gauged WZW-type theories. Nucl. Phys. B 889, 64–86 (2014). arXiv:1409.0554 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  23. Kawaguchi, I., Matsumoto, T., Yoshida, K.: Jordanian deformations of the AdS5xS5 superstring. J. High Energy Phys. 1404, 153 (2014). arXiv:1401.4855 [hep-th]

    ADS  Google Scholar 

  24. Klimčík, C.: Poisson-Lie \(T\)-duality. Nucl. Phys. B (Proc. Suppl.) 46, 116–121 (1996). arXiv:hep-th/9509095

    ADS  MathSciNet  MATH  Google Scholar 

  25. Klimčík, C.: Yang–Baxter \(\sigma \)-model and dS/AdS T-duality. J. High Energy Phys. 0212, 051 (2002). hep-th/0210095

    ADS  MathSciNet  Google Scholar 

  26. Klimčík, C.: Integrability of the Yang–Baxter \(\sigma \)-model. J. Math. Phys. 50, 043508 (2009). arXiv:0802.3518 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  27. Klimčík, C.: Integrability of the bi-Yang–Baxter \(\sigma \)-model. Lett. Math. Phys. 104, 1095 (2014). arXiv:1402.2105 [math-ph]

    ADS  MathSciNet  MATH  Google Scholar 

  28. Klimčík, C.: \(\eta \) and \(\lambda \) deformations as \({\cal{E}}\)-models. Nucl. Phys. B 900, 259 (2015). arXiv:1508.05832 [hep-th]

    ADS  MATH  Google Scholar 

  29. Klimčík, C.: Yang–Baxter \(\sigma \)-model with WZNW term as \({\cal{E}}\)-model. Phys. Lett. B 772, 725–730 (2017). arXiv:1706.08912 [hep-th]

    ADS  MATH  Google Scholar 

  30. Klimčík, C.: Dressing cosets and multi-parametric integrable deformations. J. High Energy Phys. 1907, 176 (2019). arXiv:1903.00439 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  31. Klimčík, C., Ševera, P.: Dual non-Abelian duality and the Drinfeld double. Phys. Lett. B 351, 455–462 (1995). hep-th/9502122

    ADS  MathSciNet  Google Scholar 

  32. Ševera, P.: Minimálne plochy a dualita. Diploma thesis, Prague University (1995) (in Slovak)

  33. Klimčík, C., Ševera, P.: Poisson–Lie T-duality and loop groups of Drinfeld doubles. Phys. Lett. B 372, 65–71 (1996). hep-th/9512040

    ADS  MathSciNet  MATH  Google Scholar 

  34. Klimčík, C., Ševera, P.: Dressing cosets. Phys. Lett. B 381, 56–61 (1996). hep-th/9602162

    ADS  MathSciNet  MATH  Google Scholar 

  35. Klimčík, C., Ševera, P.: Non-Abelian momentum-winding exchange. Phys. Lett. B 383, 281–286 (1996). hep-th/9605212

    ADS  MathSciNet  Google Scholar 

  36. Klimčík, C., Ševera, P.: T-duality and the moment map. Contribution to: Topics in Non-Abelian Duality, NATO Advanced Study Institute on Quantum Fields and Quantum Space Time, 323–329. arXiv:hep-th/9610198

  37. Kotousov, G.A.: Towards the Quantization of Integrable Non-linear Sigma Models. Rutgers University, Piscataway (2019). https://doi.org/10.7282/t3-c6vz-9290

    Book  Google Scholar 

  38. Lacroix, S.: Constrained affine Gaudin models and diagonal Yang-Baxter deformations. J. Phys. A 53, 255203 (2020). arXiv:1907.04836 [hep-th]

  39. Maillet, J.M.: Kac–Moody algebra and extended Yang–Baxter relations in the O(N) non-linear sigma model. Phys. Lett. B 162, 137 (1985)

    ADS  MathSciNet  Google Scholar 

  40. Maillet, J.M.: New integrable canonical structures in two-dimensional models. Nucl. Phys. B 269, 54 (1986)

    ADS  MathSciNet  Google Scholar 

  41. Maillet, J.M.: Hamiltonian structures for integrable classical theories from graded Kac–Moody algebras. Phys. Lett. B 167, 401 (1986)

    ADS  Google Scholar 

  42. Litvinov, A.V., Spodyneiko, L.A.: On dual description of the deformed \(O(N)\) sigma model. J. High Energy Phys. 1811, 139 (2018). arXiv:1804.07084 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  43. Lukyanov, S.L.: The integrable harmonic map problem versus Ricci flow. Nucl. Phys. B 865, 308 (2012). arXiv:1205.3201 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  44. Osten, D., van Tongeren, S.: Abelian Yang–Baxter deformations and TsT transformations. Nucl. Phys. B 915, 184–205 (2017). arXiv:1608.08504 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  45. Polyakov, A., Wiegman, P.: Theory of non-Abelian Goldstone bosons. Phys. Lett. B 131, 121 (1983)

    ADS  MathSciNet  Google Scholar 

  46. Sfetsos, K.: Integrable interpolations: from exact CFTs to non-Abelian T-duals. Nucl. Phys. B 880, 225 (2014). arXiv:1312.4560 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  47. Sfetsos, K., Siampos, K., Thompson, D.: Generalised integrable \(\lambda \)- and \(\eta \)-deformations and their relation. Nucl. Phys. B 899, 489–512 (2015). arXiv:1506.05784 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  48. Zakharov, V.E., Mikhailov, A.V.: Relativistically invariant two-dimensional model of field theory which is integrable by means of the inverse scattering method. Sov. Phys. JETP 47, 1017 (1978)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ctirad Klimčík.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klimčík, C. Strong integrability of the bi-YB–WZ model. Lett Math Phys 110, 2397–2416 (2020). https://doi.org/10.1007/s11005-020-01300-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-020-01300-1

Keywords

Mathematics Subject Classification

Navigation