Skip to main content
Log in

Quantum Hellinger distances revisited

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

This short note aims to study quantum Hellinger distances investigated recently by Bhatia et al. (Lett Math Phys 109:1777–1804, 2019) with a particular emphasis on barycenters. We introduce the family of generalized quantum Hellinger divergences that are of the form \(\phi (A,B)=\mathrm {Tr} \left( (1-c)A + c B - A \sigma B \right) ,\) where \(\sigma \) is an arbitrary Kubo–Ando mean, and \(c \in (0,1)\) is the weight of \(\sigma .\) We note that these divergences belong to the family of maximal quantum f-divergences, and hence are jointly convex, and satisfy the data processing inequality. We derive a characterization of the barycenter of finitely many positive definite operators for these generalized quantum Hellinger divergences. We note that the characterization of the barycenter as the weighted multivariate 1/2-power mean, that was claimed in Bhatia et al. (2019), is true in the case of commuting operators, but it is not correct in the general case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amari, S.: Information Geometry and its Applications. Springer, Tokyo (2016)

    Book  Google Scholar 

  2. Amari, S.: Integration of stochastic models by minimizing \(\alpha \)-divergence. Neural Comput. 19, 2780–2796 (2007)

    Article  MathSciNet  Google Scholar 

  3. Ando, T.: Concavity of certain maps on positive definite matrices and applications to Hadamard products. Linear Algebra Appl. 26, 203–241 (1979)

    Article  MathSciNet  Google Scholar 

  4. Ando, T., Kubo, F.: Means of positive linear operators. Math. Ann. 246, 205–224 (1980)

    Article  MathSciNet  Google Scholar 

  5. Ando, T.: Topics on Operator Inequalities. Lecture Note, Sapporo (1978)

  6. Bhatia, R., Gaubert, S., Jain, T.: Matrix versions of the Hellinger distance. Lett. Math. Phys. 109, 1777–1804 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  7. Bhatia, R., Gaubert, S., Jain, T.: Correction to: matrix versions of the Hellinger distance. Lett. Math. Phys. 109, 2779–2781 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  8. Bhatia, R., Jain, T., Lim, Y.: On the Bures–Wasserstein distance between positive definite matrices. Expos. Math. 37, 165–191 (2019)

    Article  MathSciNet  Google Scholar 

  9. Carlen, E.: Trace inequalities and quantum entropy: an introductury course. Contemp. Math. 529, 73–140 (2010)

    Article  Google Scholar 

  10. Csiszár, I.: Information-type measures of difference of probability distributions and indirect observations. Stud. Sci. Math. Hungar. 2, 299–318 (1967)

    MathSciNet  MATH  Google Scholar 

  11. Dinh, T.H., Dumitru, R., Franco, J.A.: Some geometric properties of matrix means in different distance functions, preprint (2018)

  12. Hansen, F.: The fast track to Löwner’s theorem. Linear Algebra Appl. 438, 4557–4571 (2013)

    Article  MathSciNet  Google Scholar 

  13. Hellinger, E.: Neue Begründung der Theorie quadratischer Formen von unendlichvielen Veränderlichen. J. Die Reine Angew. Math. 136, 210–271 (1909). https://doi.org/10.1515/crll.1909.136.210

    Article  MathSciNet  MATH  Google Scholar 

  14. Hiai, F., Mosonyi, M.: Different quantum \(f\)-divergences and the reversibility of quantum operations. Rev. Math. Phys. 29, 1750023 (2017)

    Article  MathSciNet  Google Scholar 

  15. Hiai, F.: Quantum \(f\)-divergences in von Neumann algebras II. Maximal \(f\)-divergences. J. Math. Phys. 60, 012203 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  16. Lim, Y., Pálfia, M.: Matrix power means and the Karcher mean. J. Funct. Anal. 262, 1498–1514 (2012)

    Article  MathSciNet  Google Scholar 

  17. Matsumoto, K.: A New Quantum Version of f-Divergence. In: Ozawa, M., Butterfield, J., Halvorson, H., Rédei, M., Kitajima, Y., Buscemi, F. (eds.) Reality and Measurement in Algebraic Quantum Theory. NWW 2015, Proceedings in Mathematics & Statistics, vol. 261, Springer, Singapore (2018)

  18. Molnár, L.: Bures isometries between density spaces of \(C^*\)-algebras. Linear Algebra Appl. 557, 22–33 (2018)

    Article  MathSciNet  Google Scholar 

  19. Morimoto, T.: Markov processes and the H-theorem. J. Phys. Soc. Jpn. 18, 328–331 (1963)

    Article  ADS  Google Scholar 

  20. Mosonyi, M., Ogawa, T.: Divergence radii and the strong converse exponent of classical-quantum channel coding with constant compositions, arXiv preprint, arXiv:1811.10599

  21. Petz, D., Ruskai, M.B.: Contraction of generalized relative entropy under stochastic mappings on matrices. Inf. Dimens. Anal. Quantum Probab. Relat. Top. 1, 83–89 (1998)

    Article  MathSciNet  Google Scholar 

  22. Pitrik, J., Virosztek, D.: On the joint convexity of the Bregman divergence of matrices. Lett. Math. Phys. 105, 675–692 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  23. Pusz, W., Woronowicz, S.L.: Functional calculus for sesquilinear forms and the purification map. Rep. Math. Phys. 8, 159–170 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  24. Schwander, O., Nielsen, F.: Non-flat clustering whith alpha-divergences, ICASSP, May 2011, Prague, Czech Republic, pp. 2100–2103, https://doi.org/10.1109/ICASSP.2011.5946740

  25. The Mathematica notebook is available at http://pub.ist.ac.at/dviroszt/hellinger-num.nb and its pdf image at http://pub.ist.ac.at/dviroszt/hellinger-num.pdf

  26. Yamazaki, T.: An integral representation of operator means via the power means and an application to the Ando-Hiai inequality, arXiv preprint arXiv:1803.04630

Download references

Acknowledgements

We are grateful to Milán Mosonyi for drawing our attention to Ref.’s [6, 14, 15, 17, 20, 21], for comments on earlier versions of this paper, and for several discussions on the topic. We are also grateful to Miklós Pálfia for several discussions; to László Erdős for his essential suggestions on the structure and highlights of this paper, and for his comments on earlier versions; and to the anonymous referee for his/her valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dániel Virosztek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

J. Pitrik was supported by the Hungarian Academy of Sciences Lendület-Momentum Grant for Quantum Information Theory, No. 96 141, and by the Hungarian National Research, Development and Innovation Office (NKFIH) via Grants Nos. K119442, K124152 and KH129601. D. Virosztek was supported by the ISTFELLOW program of the Institute of Science and Technology Austria (Project Code IC1027FELL01), by the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant Agreement No. 846294, and partially supported by the Hungarian National Research, Development and Innovation Office (NKFIH) via Grants Nos. K124152 and KH129601.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pitrik, J., Virosztek, D. Quantum Hellinger distances revisited. Lett Math Phys 110, 2039–2052 (2020). https://doi.org/10.1007/s11005-020-01282-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-020-01282-0

Keywords

Mathematics Subject Classification

Navigation