Skip to main content
Log in

Decay of Maxwell fields on Reissner–Nordström–de Sitter black holes

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we use Morawetz and geometric energy estimates—the so-called vector field method—to prove decay results for the Maxwell field in the static exterior region of the Reissner–Nordström–de Sitter black hole. We prove two types of decay: the first is a uniform decay of the energy of the Maxwell field on achronal hypersurfaces as the hypersurfaces approach timelike infinities. The second decay result is a pointwise decay in time with a rate of \(t^{-1}\) which follows from local energy decay by Sobolev estimates. Both results are consequences of bounds on the conformal energy defined by the Morawetz conformal vector field. These bounds are obtained through wave analysis on the middle spin component of the field. The results hold for a more general class of spherically symmetric spacetimes with the same arguments used in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Thus, differing from the previous methods of analysing the fundamental solution.

  2. See, for example, [2].

  3. Although the natural way of obtaining an energy–momentum tensor is by means of a Lagrangian, one can as well directly consider 2-tensors with the desired properties and which might not be derived from a Lagrangian.

  4. For electromagnetic fields represented by 2-forms on the manifold, we actually vary the (local) potential and not the field (the 2-form) itself.

  5. Depending on the sign conventions.

  6. Admitting a global Cauchy hypersurface. See [34].

  7. This is the conformal energy of the solution to the wave equation, but to avoid confusion with the conformal energy we call it a conformal charge.

  8. The conformal weight and the spin weight are, respectively, related to the way the component change when we rescale the complex vector of the tetrad by a complex constant and the conjugate vector by the conjugate constant, and when rescaling the first null vector of the tetrad by a real constant and the second by the inverse constant. More precisely, the components transform as powers of the real rescaling constant, the power being the index of the component.

  9. The details can be found in [50] for instance.

  10. A spanning set A of a vector space is a subset of the space with the property that every vector in the space can be written as a linear combination of vectors in A only.

  11. The definition of the energy given in the introduction using the Hodge star operator and the one given here are actually equal, see [57] around equation (3.10).

  12. See [50] Appendix A for a detailed calculation leading from (80) to (81).

  13. It is worth mentioning that in addition to checking these identities by hand, we had also carried out these calculations using Sage which proves to be a useful symbolic computational program for differential geometry, in both calculus and algebra.

References

  1. Andersson, L., Blue, P.: Uniform energy bound and asymptotics for the Maxwell field on a slowly rotating Kerr black hole exterior. J. Hyperbolic Differ. Equ. 12(04), 689–743 (2015)

    MathSciNet  MATH  Google Scholar 

  2. Andersson, L., Blue, P.: Hidden symmetries and decay for the wave equation on the Kerr spacetime. Ann. Math. 182(3), 787–853 (2015)

    MathSciNet  MATH  Google Scholar 

  3. Andersson, L., Blue, P., Nicolas, J.-P.: A decay estimate for a wave equation with trapping and a complex potential. Int. Math. Res. Not. 2013(3), 548–561 (2013)

    MathSciNet  MATH  Google Scholar 

  4. Andersson, L., Bäckdahl, T., Blue, P.: Second order symmetry operators. Class. Quantum Gravity 31(13), 135015 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  5. Andersson, L., Bäckdahl, T., Blue, P.: Decay of solutions to the Maxwell equation on the Schwarzschild background. Class. Quantum Gravity 33(8), 085010 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Bachelot, A.: Probleme de Cauchy global pour des systemes de Dirac-Klein-Gordon. Ann. l’IHP Phys. Théor. 48, 387–422 (1988)

    MathSciNet  MATH  Google Scholar 

  7. Blue, P., Soffer, A.: Semilinear wave equations on the Schwarzschild manifold. I. Local decay estimates. Adv. Differ. Equ. 8(5), 595–614 (2003)

    MathSciNet  MATH  Google Scholar 

  8. Blue, P.: Decay estimates and phase space analysis for wave equations on some black hole metrics. Ph.D. thesis, Rutgers, The State University of New Jersey, New Brunswick, NJ (2004)

  9. Blue, P.: Decay of the Maxwell field on the Schwarzschild manifold. J. Hyperbolic Differ. Equ. 05(04), 807–856 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Blue, P., Soffer, A.: The wave equation on the Schwarzschild metric II. Local decay for the spin-2 Regge–Wheeler equation. J. Math. Phys. 46(1), 012502 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Blue, P., Soffer, A.: “Errata for “Global existence and scattering for the nonlinear Schrodinger equation on Schwarzschild manifolds”, “Semilinear wave equations on the Schwarzschild manifold I: Local Decay Estimates”, and “The wave equation on the Schwarzschild metric II: Local Decay for the spin 2 Regge Wheeler equation””. In: arXiv preprint arXiv:gr-qc/0608073 (2006)

  12. Blue, P., Soffer, A.: Phase space analysis on some black hole manifolds. J. Funct. Anal. 256(1), 1–90 (2009)

    MathSciNet  MATH  Google Scholar 

  13. Blue, P., Sterbenz, J.: Uniform decay of local energy and the semi-linear wave equation on Schwarzschild space. Commun. Math. Phys. 268(2), 481–504 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Bony, J.-F., Häfner, D.: Decay and non-decay of the local energy for the wave equation on the de Sitter–Schwarzschild metric. Commun. Math. Phys. 282(3), 697–719 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  15. Choquet-Bruhat, Y., Christodoulou, D.: Existence of global solutions of the Yang–Mills, Higgs and spinor field equations in 3 + 1 dimensions. Ann. Sci l’École Norm. Supérieure 14(4), 481–506 (1981)

    MathSciNet  MATH  Google Scholar 

  16. Christodoulou, D., Klainerman, S.: Asymptotic properties of linear field equations in Minkowski space. Commun. Pure Appl. Math. 43(2), 137–199 (1990)

    MathSciNet  MATH  Google Scholar 

  17. Christodoulou, D., Klainerman, S.: The Global Nonlinear Stability of the Minkowski Space (PMS-41). Princeton Mathematical Series, vol. 41. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  18. Dafermos, M., Rodnianski, I.: The wave equation on Schwarzschild–de Sitter spacetimes. ArXiv preprint arXiv:0709.2766 (2008)

  19. Dafermos, M., Rodnianski, I.: Lectures on black holes and linear waves. Evol. Equ. Clay Math. Proc. 17, 97–205 (2008)

    MathSciNet  Google Scholar 

  20. Dafermos, M., Rodnianski, I.: The red-shift effect and radiation decay on black hole spacetimes. Commun. Pure Appl. Math. 62(7), 859–919 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Dafermos, M., Rodnianski, I.: A new physical-space approach to decay for the wave equation with applications to black hole spacetimes. In: XVIth International Congress on Mathematical Physics. pp. 421–432 (2010)

  22. Dafermos, M., Rodnianski, I.: Decay for solutions of the wave equation on Kerr exterior spacetimes I–II: The cases \(|{\rm a}|\ll \) M or axisymmetry. ArXiv preprint arXiv:1010.5132 (2010)

  23. Dafermos, M., Rodnianski, I.: A proof of the uniform boundedness of solutions to the wave equation on slowly rotating Kerr backgrounds. Invent. Math. 185(3), 467–559 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  24. Dafermos, M., Rodnianski, I., Shlapentokh-Rothman, Y.: A scattering theory for the wave equation on Kerr black hole exteriors. ArXiv preprint arXiv:1412.8379 (2014)

  25. Dafermos, M., Rodnianski, I., Shlapentokh-Rothman, Y.: Decay for solutions of the wave equation on Kerr exterior spacetimes III: the full subextremal case \(|{\rm a}|< {\rm M}\). ArXiv preprint arXiv:1402.7034 (2014)

  26. Evans, L.C.: Partial Differential Equations, 2nd edn. American Mathematical Society, Providence, RI (2010)

    MATH  Google Scholar 

  27. Finster, F., et al.: Decay rates and probability estimates for massive dirac particles in the Kerr-Newman black hole geometry. Commun. Math. Phys. 230(2), 201–244 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  28. Finster, F., Smoller, J.: A time-independent energy estimate for outgoing scalar waves in the Kerr geometry. J. Hyperbolic Differ. Equ. 5(01), 221–255 (2008)

    MathSciNet  MATH  Google Scholar 

  29. Finster, F., et al.: The long-time dynamics of Dirac particles in the Kerr–Newman black hole geometry. Adv. Theor. Math. Phys. 7(1), 25–52 (2003)

    MathSciNet  Google Scholar 

  30. Finster, F., et al.: An integral spectral representation of the propagator for the wave equation in the Kerr geometry. Commun. Math. Phys. 260(2), 257–298 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  31. Finster, F., et al.: Decay of solutions of the wave equation in the Kerr geometry. Commun. Math. Phys. 264(2), 465–503 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  32. Finster, F., et al.: (Erratum) Decay of solutions of the wave equation in the Kerr geometry. Commun. Math. Phys. 280(2), 563–573 (2008)

    ADS  MATH  Google Scholar 

  33. Ginibre, J., Soffer, A., Velo, G.: The global Cauchy problem for the critical non-linear wave equation. J. Funct. Anal. 110(1), 96–130 (1992)

    MathSciNet  MATH  Google Scholar 

  34. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge (1973)

    MATH  Google Scholar 

  35. Hintz, P.: Global analysis of linear and nonlinear wave equations on cosmological spacetimes. Ph.D. thesis. Stanford University (2015)

  36. Hintz, P., Vasy, A.: Analysis of linear waves near the Cauchy horizon of cosmological black holes. ArXiv preprint arXiv:1512.08004 (2015)

  37. Hintz, P., Vasy, A.: Asymptotics for the wave equation on differential forms on Kerr–de Sitter space. arXiv:1502.03179 [gr-qc] (2015)

  38. Hintz, P., Vasy, A.: Semilinear wave equations on asymptotically de Sitter, Kerr–de Sitter and Minkowski spacetimes. Anal. PDE 8(8), 1807–1890 (2015)

    MathSciNet  MATH  Google Scholar 

  39. Hörmander, L.: The lifespan of classical solutions of non-linear hyperbolic equations. In: Cordes, H.O., Gramsch, B., Widom, H. (eds.) Pseudo-Differential Operators. Lecture Notes in Mathematics, vol. 1256, pp. 214–280. Springer, Berlin (1987). https://doi.org/10.1007/BFb0077745

    Chapter  Google Scholar 

  40. Inglese, W., Nicolo, F.: Asymptotic properties of the electromagnetic field in the external Schwarzschild spacetime. Ann. Henri Poincaré 1, 895–944 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  41. Klainerman, S.: The null condition and global existence to nonlinear wave equations. In: Nonlinear Systems of Partial Differential Equations in Applied Mathematics, Part 1 (Santa Fe, N.M., 1984). Vol. 23. Lectures in Applied Mathematics. American Mathematical Society, Providence, RI, pp. 293–326 (1986)

  42. Klainerman, S.: Global existence of small amplitude solutions to nonlinear Klein–Gordon equations in four space-time dimensions. In: Seminar on New Results in Nonlinear Partial Differential Equations. Aspects of Mathematics/Aspekte der Mathematik 10. Vieweg+Teubner Verlag, pp. 75–89 (1987)

  43. Klainerman, S.: Remarks on the global Sobolev inequalities in the Minkowski space of n + 1-dimensions. Commun. Pure Appl. Math. 40(1), 111–117 (1987)

    MATH  Google Scholar 

  44. Klainerman, S.: Uniform decay estimates and the Lorentz invariance of the classical wave equation. Commun. Pure Appl. Math. 38(3), 321–332 (1985)

    ADS  MathSciNet  MATH  Google Scholar 

  45. Laba, I., Soffer, A.: Global existence and scattering for the nonlinear Schrodinger equation on Schwarzschild manifolds. ArXiv preprint arxiv:math-ph/0002030 (2000)

  46. Luk, J.: A vector field method approach to improved decay for solutions to the wave equation on a slowly rotating Kerr black hole. Anal. PDE 5(3), 553–625 (2012)

    MathSciNet  MATH  Google Scholar 

  47. Metcalfe, J., Tataru, D., Tohaneanu, M.: Price’s law on nonstationary space-times. Adv. Math. 230(3), 995–1028 (2012)

    MathSciNet  MATH  Google Scholar 

  48. Metcalfe, J., Tataru, D., Tohaneanu, M.: Pointwise decay for the Maxwell field on black hole space-times. arXiv:1411.3693 [math] (2014)

  49. Mokdad, M.: Conformal scattering of Maxwell fields on Reissner–Nordstrøm–de Sitter black hole spacetimes. Ann l’Institut Fourier. arXiv:1706.06993 (2017)

  50. Mokdad, M.: Maxwell field on the Reissner–Nordstrøm–de Sitter manifold: decay and conformal scattering. Theses.fr; sudoc.abes.fr; tel.archives-ouvertes.fr. Ph.D. thesis. Université de Bretagne occidentale—Brest, France (2016)

  51. Mokdad, M.: Reissner–Nordstrøm–de Sitter manifold: photon sphere and maximal analytic extension. Class. Quantum Gravity 34(17), 175014 (2017). arXiv:1701.06982

    ADS  MathSciNet  MATH  Google Scholar 

  52. Morawetz, C.: Notes on time decay and scattering for some hyperbolic problems. CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (1975)

  53. Morawetz, C.S.: The limiting amplitude principle. Commun. Pure Appl. Math. 15(3), 349–361 (1962)

    MathSciNet  MATH  Google Scholar 

  54. Morawetz, C.S.: A decay theorem for Maxwell’s equations. Russ. Math. Surv. 29(2), 242–250 (1974)

    MathSciNet  MATH  Google Scholar 

  55. Morawetz, C.S., Ralston, J.V., Strauss, W.A.: Decay of solutions of the wave equation outside nontrapping obstacles. Commun. Pure Appl. Math. 30(4), 447–508 (1977)

    MathSciNet  MATH  Google Scholar 

  56. Nicolas, J.-P.: The conformal approach to asymptotic analysis. ArXiv preprint arXiv:1508.02592 (2015)

  57. Nicolas, J.-P.: Conformal scattering on the Schwarzschild metric. Ann. l’inst. Fourier 66(3), 1175–1216 (2016)

    MathSciNet  MATH  Google Scholar 

  58. Penrose, R., Rindler, W.: Spinors and space-time, two-Spinor calculus and relativistic fields, vol. 1. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  59. Penrose, R., Rindler, W.: Spinors and space-time: Spinor and Twistor methods in space-time geometry, vol. 2. Cambridge University Press, Cambridge (1988)

    MATH  Google Scholar 

  60. Price, R.H.: Nonspherical perturbations of relativistic gravitational collapse. I. Scalar and gravitational perturbations. Phys. Rev. D 5(10), 2419 (1972)

    ADS  MathSciNet  Google Scholar 

  61. Price, R.H.: Nonspherical perturbations of relativistic gravitational collapse. II. Integer-spin, zerorest-mass fields. Phys. Rev. D 5(10), 2439 (1972)

    ADS  MathSciNet  Google Scholar 

  62. Price, R.H., Burko, L.M.: Late time tails from momentarily stationary, compact initial data in Schwarzschild spacetimes. Phys. Rev. D 70(8), 084039 (2004)

    ADS  MathSciNet  Google Scholar 

  63. Sterbenz, J., Tataru, D.: Local energy decay for maxwell fields part I: spherically symmetric blackhole backgrounds. Int. Math. Res. Not. 2015(11), 3298–3342 (2015)

    MATH  Google Scholar 

  64. Tataru, D.: Local decay of waves on asymptotically flat stationary space-times. Am. J. Math. 135(2), 361–401 (2013)

    MathSciNet  MATH  Google Scholar 

  65. Tataru, D., Tohaneanu, M.: A local energy estimate on Kerr black hole backgrounds. Int. Math. Res. Not. 2011(2), 248–292 (2011)

    MathSciNet  MATH  Google Scholar 

  66. Tohaneanu, M.: Strichartz estimates on Kerr black hole backgrounds. Trans. Am. Math. Soc. 364(2), 689–702 (2012)

    MathSciNet  MATH  Google Scholar 

  67. Wald, R.M.: General relativity. University of Chicago Press, Chicago (2010)

    MATH  Google Scholar 

Download references

Acknowledgements

The results of this paper and the mentioned conformal scattering results on RNDS spacetime [49, 51], were obtained during my Ph.D. thesis [50]. I would like to thank my thesis advisor Pr. Jean-Philippe Nicolas for his indispensable guidance during the thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mokdad Mokdad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokdad, M. Decay of Maxwell fields on Reissner–Nordström–de Sitter black holes. Lett Math Phys 110, 1961–2018 (2020). https://doi.org/10.1007/s11005-020-01273-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-020-01273-1

Keywords

Mathematics Subject Classification

Navigation