Skip to main content
Log in

Reduction of a bi-Hamiltonian hierarchy on \(T^*\mathrm{U}(n)\) to spin Ruijsenaars–Sutherland models

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We first exhibit two compatible Poisson structures on the cotangent bundle of the unitary group \(\mathrm{U}(n)\) in such a way that the invariant functions of the \({\mathfrak {u}}(n)^*\)-valued momenta generate a bi-Hamiltonian hierarchy. One of the Poisson structures is the canonical one and the other one arises from embedding the Heisenberg double of the Poisson–Lie group \(\mathrm{U}(n)\) into \(T^*\mathrm{U}(n)\), and subsequently extending the embedded Poisson structure to the full cotangent bundle. We then apply Poisson reduction to the bi-Hamiltonian hierarchy on \(T^* \mathrm{U}(n)\) using the conjugation action of \(\mathrm{U}(n)\), for which the ring of invariant functions is closed under both Poisson brackets. We demonstrate that the reduced hierarchy belongs to the overlap of well-known trigonometric spin Sutherland and spin Ruijsenaars–Schneider-type integrable many-body models, which receive a bi-Hamiltonian interpretation via our treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This is so despite the fact that the holomorphic hyperbolic/trigonometric RS model is well-understood in more than one reduction approaches [1, 7, 18, 30]. Treating real forms of holomorphic integrable systems is a highly non-trivial task in general.

  2. If not specified otherwise, our spaces of \(C^\infty \)-functions always denote spaces of real functions.

  3. Our calculations do not use the Jacobi identity of the \(m_1\)-related brackets. Hence, the Jacobi identity of the bracket \(\{\ ,\ \}_+^1\) (2.18) follows from that of \(\{\ ,\ \}_+\) (2.15).

  4. Incidentally, one can also work out a direct proof of the closure of \(C^\infty ({\mathfrak {M}})^{\mathrm{U}(n)}\) under \(\{\ ,\ \}_2\) (3.5).

  5. We here use some well-known results about free proper actions; see, e.g. paragraph 6.5 in [36].

  6. A complicated explicit formula for \(b_+(Q,\lambda )\) can be obtained along the lines of Section 5.2 in [13].

References

  1. Arutyunov, G., Klabbers, R., Olivucci, E.: Quantum trace formulae for the integrals of the hyperbolic Ruijsenaars–Schneider model, JHEP05, p. 69 (2019). arXiv:1902.06755

  2. Arutyunov, G., Olivucci, E.: Hyperbolic spin Ruijsenaars–Schneider model from Poisson reduction. arXiv:1906.02619

  3. Balog, J., Da̧browski, L., Fehér, L.: Classical \(r\)-matrix and exchange algebra in WZNW and Toda theories. Phys. Lett. B 244, 227–234 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bartocci, C., Falqui, G., Mencattini, I., Ortenzi, G., Pedroni, M.: On the geometric origin of the bi-Hamiltonian structure of the Calogero–Moser system. Int. Math. Res. Not. 2010, 279–296 (2010). arXiv:0902.0953 [math-ph]

  5. Braden, H.W., Hone, N.W.: Affine Toda solitons and systems of Calogero–Moser type. Phys. Lett. B 380, 296–302 (1996). arXiv:hep-th/9603178

    Article  ADS  MathSciNet  Google Scholar 

  6. Calogero, F.: Solution of the one-dimensional N-body problem with quadratic and/or inversely quadratic pair potentials. J. Math. Phys. 12, 419–436 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  7. Chalykh, O., Fairon, M.: Multiplicative quiver varieties and generalised Ruijsenaars–Schneider models. J. Geom. Phys. 121, 413–437 (2017). arXiv:1704.05814 [math.QA]

    Article  ADS  MathSciNet  Google Scholar 

  8. Chalykh, O., Fairon, M.: On the Hamiltonian formulation of the trigonometric spin Ruijsenaars–Schneider system. arXiv:1811.08727

  9. Etingof, P.I., Frenkel, I.B., Kirillov Jr., A.A.: Spherical functions on affine Lie groups. Duke Math. J. 80, 59–90 (1995). arXiv:hep-th/9407047

    Article  MathSciNet  Google Scholar 

  10. Etingof, P., Varchenko, A.: Geometry and classification of solutions of the classical dynamical Yang–Baxter equation. Commun. Math. Phys. 192, 77–120 (1998). arXiv:q-alg/9703040

    Article  ADS  MathSciNet  Google Scholar 

  11. Falqui, G., Magri, F., Pedroni, M.: Bihamiltonian geometry, Darboux coverings, and linearization of the KP hierarchy. Commun. Math. Phys. 197, 303–324 (1998). arXiv:solv-int/9806002

    Article  ADS  Google Scholar 

  12. Falqui, G., Mencattini, I.: Bi-Hamiltonian geometry and canonical spectral coordinates for the rational Calogero–Moser system. J. Geom. Phys. 118, 126–137 (2017). arXiv:1511.06339 [math-ph]

    Article  ADS  MathSciNet  Google Scholar 

  13. Fehér, L.: Poisson–Lie analogues of spin Sutherland models. Nucl. Phys. B 949 (2019). arXiv:1809.01529 [math-ph]

  14. Fehér, L.: Bi-Hamiltonian structure of a dynamical system introduced by Braden and Hone. Nonlinearity 32, 4377–4394 (2019). arXiv:1901.03558 [math-ph]

    Article  ADS  MathSciNet  Google Scholar 

  15. Fehér, L., Klimčík, C.: Poisson–Lie generalization of the Kazhdan–Kostant–Sternberg reduction. Lett. Math. Phys. 87, 125–138 (2009). arXiv:0809.1509 [math-ph]

    Article  ADS  MathSciNet  Google Scholar 

  16. Fehér, L., Klimčík, C.: Poisson–Lie interpretation of trigonometric Ruijsenaars duality. Commun. Math. Phys. 301, 55–104 (2011). arXiv:0906.4198 [math-ph]

    Article  ADS  MathSciNet  Google Scholar 

  17. Fehér, L., Pusztai, B.G.: Spin Calogero models obtained from dynamical \(r\)-matrices and geodesic motion. Nucl. Phys. B 734, 304–325 (2006). arXiv:math-ph/0507062

    Article  ADS  MathSciNet  Google Scholar 

  18. Fock, V.V., Rosly, A.A.: Poisson structure on moduli of flat connections on Riemann surfaces and the \(r\)-matrix. In: Moscow Seminar in Mathematical Physics, AMS Transl. Ser. 2, Vol. 191, pp. 67–86. American Mathematical Society (1999). arXiv:math/9802054 [math.QA]

  19. Gibbons, J., Hermsen, T.: A generalisation of the Calogero–Moser system. Physica D 11, 337–348 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  20. Kazhdan, D., Kostant, B., Sternberg, S.: Hamiltonian group actions and dynamical systems of Calogero type. Commun. Pure Appl. Math. XXXI, 481–507 (1978)

    Article  MathSciNet  Google Scholar 

  21. Kharchev, S., Levin, A., Olshanetsky, M., Zotov, A.: Quasi-compact Higgs bundles and Calogero–Sutherland systems with two types spins. J. Math. Phys. 59, 103509 (2018). arXiv:1712.08851 [math-ph]

    Article  ADS  MathSciNet  Google Scholar 

  22. Klimčík, C.: On moment maps associated to a twisted Heisenberg double. Rev. Math. Phys. 18, 781–821 (2006). arXiv:math-ph/0602048

    Article  MathSciNet  Google Scholar 

  23. Korogodski, L.I., Soibelman, Y.S.: Algebras of Functions on Quantum Groups: Part I. American Mathematical Society, Providence (1998)

    Book  Google Scholar 

  24. Krichever, I., Zabrodin, A.: Spin generalization of the Ruijsenaars–Schneider model, non-abelian 2D Toda chain and representations of Sklyanin algebra. Russ. Math. Surv. 50, 1101–1150 (1995). arXiv:hep-th/9505039

    Article  Google Scholar 

  25. Li, L.-C.: Poisson involutions, spin Calogero–Moser systems associated with symmetric Lie subalgebras and the symmetric space spin Ruijsenaars–Schneider models. Commun. Math. Phys. 265, 333–372 (2006). arXiv:math-ph/0506025

    Article  ADS  MathSciNet  Google Scholar 

  26. Li, L.-C., Xu, P.: A class of integrable spin Calogero–Moser systems. Commun. Math. Phys. 231, 257–286 (2002). arXiv:math/0105162 [math.QA]

    Article  ADS  MathSciNet  Google Scholar 

  27. Lu, J.-H.: Momentum mappings and reduction of Poisson actions. In: Dazord, P., Weinstein, A. (eds.) Symplectic Geometry, Groupoids, and Integrable Systems, pp. 209–226. Springer (1991)

  28. Moser, J.: Three integrable Hamiltonian systems connected with isospectral deformations. Adv. Math. 16, 197–220 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  29. Nekrasov, N.: Infinite-dimensional algebras, many-body systems and gauge theories. In: Morozov, A.Yu., Olshanetsky, M.A. (eds.) Moscow Seminar in Mathematical Physics, AMS Transl. Ser. 2, Vol. 191, pp. 263–299. American Mathematical Society (1999)

  30. Oblomkov, A.: Double affine Hecke algebras and Calogero–Moser spaces. Represent. Theory 8, 243–266 (2004)

    Article  MathSciNet  Google Scholar 

  31. Ortega, J.-P., Ratiu, T.: Momentum Maps and Hamiltonian Reduction. Birkhäuser, Basel (2004)

    Book  Google Scholar 

  32. Reshetikhin, N.: Degenerate integrability of spin Calogero–Moser systems and the duality with the spin Ruijsenaars systems. Lett. Math. Phys. 63, 55–71 (2003). arXiv:math/0202245 [math.QA]

    Article  MathSciNet  Google Scholar 

  33. Reshetikhin, N.: Degenerately integrable systems. J. Math. Sci. 213, 769–785 (2016). arXiv:1509.00730 [math-ph]

    Article  MathSciNet  Google Scholar 

  34. Reshetikhin, N.: Spin Calogero–Moser models on symmetric spaces. arXiv:1903.03685

  35. Roubtsov, V., Skrypnyk, T.: Compatible Poisson brackets, quadratic Poisson algebras and classical r-matrices. In: Kruglikov, B., et al. (eds.) Differential Equations-Geometry, Symmetries and Integrability: The Abel Symposium 2008, pp. 311–333. Springer, Berlin (2009)

    Chapter  Google Scholar 

  36. Rudolph, G., Schmidt, M.: Differential Geometry and Mathematical Physics. Part I. Manifolds, Lie Groups and Hamiltonian Systems. Springer, Berlin (2013)

    Book  Google Scholar 

  37. Ruijsenaars, S.N.M.: Systems of Calogero–Moser type. In: Proceedings of the 1994 CRM-Banff Summer School: Particles and Fields, pp. 251–352 Springer (1999)

  38. Ruijsenaars, S.N.M., Schneider, H.: A new class of integrable systems and its relation to solitons. Ann. Phys. 170, 370–405 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  39. Schomerus, V., Sobko, E.: From spinning conformal blocks to matrix Calogero–Sutherland models, JHEP04, p. 052 (2018). arXiv:1711.02022 [hep-th]

  40. Schwartz, G.W.: Smooth functions invariant under the action of a compact Lie group. Topology 14, 63–68 (1975)

    Article  MathSciNet  Google Scholar 

  41. Semenov-Tian-Shansky, M.A.: Dressing transformations and Poisson group actions. Publ. RIMS 21, 1237–1260 (1985)

    Article  MathSciNet  Google Scholar 

  42. Sergyeyev, A.: A simple way of making a Hamiltonian system into a bi-Hamiltonian one. Acta Appl. Math. 83, 183–197 (2004). arXiv:nlin/0310012 [nlin.SI]

    Article  MathSciNet  Google Scholar 

  43. Sjamaar, R., Lerman, E.: Stratified symplectic spaces and reduction. Ann. Math. 134, 375–422 (1991)

    Article  MathSciNet  Google Scholar 

  44. Smirnov, R.G.: Bi-Hamiltonian formalism: a constructive approach. Lett. Math. Phys. 41, 333–347 (1997)

    Article  MathSciNet  Google Scholar 

  45. Suris, YuB: Why is the Ruijsenaars–Schneider hierarchy governed by the same \(R\)-operator as the Calogero–Moser one? Phys. Lett. A 225, 253–262 (1997). arXiv:hep-th/9602160, arXiv:solv-int/9603011

    Article  ADS  MathSciNet  Google Scholar 

  46. Sutherland, B.: Exact results for a quantum many-body problem in one dimension. Phys. Rev. A 4, 2019–2021 (1971)

    Article  ADS  Google Scholar 

  47. van Diejen, J.F., Vinet, L. (eds.): Calogero–Moser–Sutherland Models. Springer, Berlin (2000)

    MATH  Google Scholar 

  48. Wojciechowski, S.: An integrable marriage of the Euler equation with the Calogero–Moser system. Phys. Lett. 111, 101–103 (1985)

    Article  MathSciNet  Google Scholar 

  49. Zakrzewski, S.: Free motion on the Poisson SU(N) group. J. Phys. A Math. Gen. 30, 6535–6543 (1997). arXiv:dg-ga/9612008

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

I wish to thank I. Marshall for generous help with some calculations. I am also grateful to J. Balog, T.F. Görbe and M. Fairon for useful comments on the manuscript. This research was performed in the framework of the Project GINOP-2.3.2-15-2016-00036 co-financed by the European Regional Development Fund and the budget of Hungary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Fehér.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fehér, L. Reduction of a bi-Hamiltonian hierarchy on \(T^*\mathrm{U}(n)\) to spin Ruijsenaars–Sutherland models. Lett Math Phys 110, 1057–1079 (2020). https://doi.org/10.1007/s11005-019-01252-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-019-01252-1

Keywords

Mathematics Subject Classification

Navigation