Skip to main content
Log in

Strong generators of the subregular \(\mathcal {W}\)-algebra \(\mathcal {W}^{K-N}(\mathfrak {sl}_N, f_{sub})\) and combinatorial description at critical level

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We construct explicitly strong generators of the affine \(\mathcal {W}\)-algebra \(\mathcal {W}^{K_0-N}(\mathfrak {sl}_N, f_{sub})\) of subregular type A. Moreover, we are able to describe the OPEs between them at critical level. We also give a description the affine \(\mathcal {W}\)-algebra \(\mathcal {W}^{-N}(\mathfrak {sl}_N, f_{sub})\) in terms of certain fermionic fields, which was conjectured by Adamović.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adamović, D.: Realization of \({W}^{(2)}_n\) algebra and its Whittaker modules at the critical level. private notes pp. 1–4 (2015)

  2. Arakawa, T.: \(W\)-algebras at the critical level. In: Algebraic Groups and Quantum Groups, Contemp. Math., Vol. 565, pp. 1–13. Amer. Math. Soc., Providence, RI (2012). https://doi.org/10.1090/conm/565/11184

  3. Arakawa, T.: Introduction to W-algebras and their representation theory. In: Perspectives in Lie theory, Springer INdAM Ser., Vol. 19, pp. 179–250. Springer, Cham (2017)

    Chapter  Google Scholar 

  4. Arakawa, T., Creutzig, T., Linshaw, A.R.: W-algebras as coset vertex algebras. to appear in Invent. Math. (2019). arXiv:1801.03822

  5. Arakawa, T., Molev, A.: Explicit generators in rectangular affine \({\cal{W}}\)-algebras of type \(A\). Lett. Math. Phys. 107(1), 47–59 (2017). https://doi.org/10.1007/s11005-016-0890-2

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Arakawa, T., Moreau, A.: Arc spaces and chiral symplectic cores. to appear in the special issue of Publ. Res. Inst. Math. (2019). arXiv:1802.06533

  7. De Sole, A., Kac, V.G.: Finite versus affine \(W\)-algebras. Jpn. J. Math. 1(1), 137–261 (2006). https://doi.org/10.1007/s11537-006-0505-2

    Article  MathSciNet  MATH  Google Scholar 

  8. Fateev, V.A., Lukyanov, S.L.: Additional symmetries and exactly solvable models of two-dimensional conformal field theory. Sov. Sci. Rev. A. Phys. 15(1), 1–117 (1990)

    MATH  Google Scholar 

  9. Feigin, B., Frenkel, E.: Quantization of the Drinfel’d–Sokolov reduction. Phys. Lett. B 246(1–2), 75–81 (1990). https://doi.org/10.1016/0370-2693(90)91310-8

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Feigin, B.L., Semikhatov, A.M.: \( W^{(2)}_n\) algebras. Nuclear Phys. B 698(3), 409–449 (2004). https://doi.org/10.1016/j.nuclphysb.2004.06.056

    Article  ADS  MathSciNet  Google Scholar 

  11. Frenkel, E.: Wakimoto modules, opers and the center at the critical level. Adv. Math. 195(2), 297–404 (2005). https://doi.org/10.1016/j.aim.2004.08.002

    Article  MathSciNet  MATH  Google Scholar 

  12. Frenkel, E., Ben-Zvi, D.: Vertex Algebras and Algebraic Curves, Mathematical Surveys and Monographs, Vol. 88, 2nd edn. American Mathematical Society, Providence, RI (2004). https://doi.org/10.1090/surv/088

  13. Frenkel, I.B., Zhu, Y.: Vertex operator algebras associated to representations of affine and Virasoro algebras. Duke Math. J. 66(1), 123–168 (1992). https://doi.org/10.1215/S0012-7094-92-06604-X

    Article  MathSciNet  MATH  Google Scholar 

  14. Friedan, D., Martinec, E., Shenker, S.: Conformal invariance, supersymmetry and string theory. Nuclear Phys. B 271(1), 93–165 (1986). https://doi.org/10.1016/0550-3213(86)90356-1

    Article  ADS  MathSciNet  Google Scholar 

  15. Genra, N.: Screening operators for \({\cal{W}}\)-algebras. Selecta Math. (N.S.) 23(3), 2157–2202 (2017). https://doi.org/10.1007/s00029-017-0315-9

    Article  MathSciNet  MATH  Google Scholar 

  16. Genra, N.: Screening Operators and Parabolic Inductions for Affine W-Algebras. arXiv e-prints arXiv:1806.04417 (2018)

  17. Kac, V.: Vertex Algebras for Beginners, University Lecture Series, Vol. 10, 2nd edn. American Mathematical Society, Providence, RI (1998). https://doi.org/10.1090/ulect/010

  18. Kac, V., Roan, S.S., Wakimoto, M.: Quantum reduction for affine superalgebras. Commun. Math. Phys. 241(2–3), 307–342 (2003). https://doi.org/10.1007/s00220-003-0926-1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Kac, V.G., Wakimoto, M.: Quantum reduction and representation theory of superconformal algebras. Adv. Math. 185(2), 400–458 (2004). https://doi.org/10.1016/j.aim.2003.12.005

    Article  MathSciNet  MATH  Google Scholar 

  20. Kac, V.G., Wakimoto, M.: Corrigendum to: quantum reduction and representation theory of superconformal algebras. Adv. Math. 193(2), 453–455 (2005). https://doi.org/10.1016/j.aim.2005.01.001

    Article  MathSciNet  Google Scholar 

  21. Molev, A.: Sugawara Operators for Classical Lie Algebras. Mathematical Surveys and Monographs, vol. 229. American Mathematical Society, Providence (2018)

    Book  Google Scholar 

  22. Premet, A.: Special transverse slices and their enveloping algebras. Adv. Math. 170(1), 1–55 (2002). https://doi.org/10.1006/aima.2001.2063.. (With an appendix by Serge Skryabin)

    Article  MathSciNet  MATH  Google Scholar 

  23. Smith, S.P.: A class of algebras similar to the enveloping algebra of sl(2). Trans. Am. Math. Soc. 322(1), 285–314 (1990). https://doi.org/10.2307/2001532

    Article  MathSciNet  MATH  Google Scholar 

  24. Wakimoto, M.: Fock representations of the affine Lie algebra \(A^{(1)}_1\). Commun. Math. Phys. 104(4), 605–609 (1986). http://projecteuclid.org/euclid.cmp/1104115171

  25. Zhu, Y.: Modular invariance of characters of vertex operator algebras. J. Am. Math. Soc. 9(1), 237–302 (1996). https://doi.org/10.1090/S0894-0347-96-00182-8

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

One of the main results of this paper, Theorem 4.5, was first conjectured by Dražen Adamović. The authors would like to express their gratitude to him for showing us his private notes [1]. The authors are deeply grateful to Tomoyuki Arakawa for valuable comments. The authors also thank Boris Feigin and Alexei Semikhatov for fruitful discussion on their construction of the vertex algebra \(W^{(2)}_N\). The second author thanks Yoshihiro Takeyama for discussion on the proof of Lemma 3.6. The first author was supported by Grant-in-Aid for JSPS Fellows (No.17J07495) and is supported by JSPS Overseas Research Fellowships. The second author was supported by JSPS KAKENHI Grant Number JP17K14151.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiro Kuwabara.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Genra, N., Kuwabara, T. Strong generators of the subregular \(\mathcal {W}\)-algebra \(\mathcal {W}^{K-N}(\mathfrak {sl}_N, f_{sub})\) and combinatorial description at critical level. Lett Math Phys 110, 21–41 (2020). https://doi.org/10.1007/s11005-019-01211-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-019-01211-w

Keywords

Mathematics Subject Classification

Navigation