Skip to main content
Log in

FRT presentation of classical Askey–Wilson algebras

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Automorphisms of the infinite-dimensional Onsager algebra are introduced. Certain quotients of the Onsager algebra are formulated using a polynomial in these automorphisms. In the simplest case, the quotient coincides with the classical analog of the Askey–Wilson algebra. In the general case, generalizations of the classical Askey–Wilson algebra are obtained. The corresponding class of solutions of the non-standard classical Yang–Baxter algebra is constructed, from which a generating function of elements in the commutative subalgebra is derived. We provide also another presentation of the Onsager algebra and of the classical Askey–Wilson algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For the universal Askey–Wilson algebra introduced in [32], a second presentation is known.

  2. We denote the q-commutator \([X,Y]_q=qXY-q^{-1}YX\).

  3. The q-Onsager algebra is defined in terms of generators and q-analogs of the Dolan–Grady relations (2.4), see [1, 31]. Note that the same relations showed up earlier in the context of polynomial association schemes [30].

References

  1. Baseilhac, P.: An integrable structure related with tridiagonal algebras. Nucl. Phys. B 705, 605–619 (2005). arXiv:math-ph/0408025

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Baseilhac, P., Belliard, S.: An attractive basis for the \(q\)-Onsager algebra. arXiv:1704.02950

  3. Baseilhac, P., Belliard, S., Crampe, N.: FRT presentation of the Onsager algebras. Lett. Math. Phys., 1–24 (2018). arXiv:1709.08555 [math-ph]

  4. Baseilhac, P., Koizumi, K.: A deformed analogue of Onsager’s symmetry in the XXZ open spin chain. J. Stat. Mech. 0510, P005 (2005). arXiv:hep-th/0507053

    MATH  Google Scholar 

  5. Baseilhac, P., Koizumi, K.: Exact spectrum of the XXZ open spin chain from the q-Onsager algebra representation theory. J. Stat. Mech., P09006 (2007). arXiv:hep-th/0703106

  6. Baseilhac, P., Kolb, S.: Braid group action and root vectors for the \(q-\)Onsager algebra. arXiv:1706.08747

  7. Baseilhac, P., Shigechi, K.: A new current algebra and the reflection equation. Lett. Math. Phys. 92, 47–65 (2010). arXiv:0906.1482

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Davies, B.: Onsager’s algebra and superintegrability. J. Phys. A 23, 2245–2261 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Davies, B.: Onsager’s algebra and the Dolan–Grady condition in the non-self-dual case. J. Math. Phys. 32, 2945–2950 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Dolan, L., Grady, M.: Conserved charges from self-duality. Phys. Rev. D 25, 1587–1604 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  11. De Bie, H., Genest, V.X., van de Vijver, W., Vinet, L.: A higher rank Racah algebra and the \(Z_n\) Laplace–Dunkl operator. arXiv:1610.02638

  12. Faddeev, L.D., Reshetikhin, N.Y., Takhtajan, L.A.: Quantization of Lie groups and Lie algebras. LOMI preprint, Leningrad (1987)

  13. Faddeev, L.D., Reshetikhin, N.Y., Takhtajan, L.A.: Quantization of Lie groups and Lie algebras. Leningr. Math. J. 1, 193 (1990)

    MathSciNet  MATH  Google Scholar 

  14. Genest, V.X., Vinet, L., Zhedanov, A.: The equitable Racah algebra from three \(su(1, 1)\) algebras. J. Phys. A Math. Theor. 47, 025203 (2013). arXiv:1309.3540

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Granovskii, Y., Zhedanov, A.S.: Nature of the symmetry group of the 6j-symbol. Zh. Eksper. Teoret. Fiz. 94, 49–54 (1988). (English transl.: Soviet Phys. JETP 67 (1988), 1982–1985)

    MathSciNet  Google Scholar 

  16. Granovskii, Y., Lutzenko, I., Zhedanov, A.: Linear covariance algebra for \(sl_q(2)\). J. Phys. A Math. Gen. 26, L357–L359 (1993)

    Article  Google Scholar 

  17. Koornwinder, T.: The relationship between Zhedanov’s algebra \(AW(3)\) and the double affine Hecke algebra in the rank one case. SIGMA 3, 063 (2007). arXiv:math.QA/0612730

    MathSciNet  MATH  Google Scholar 

  18. Koornwinder, T.: Zhedanov’s algebra \(AW(3)\) and the double affine Hecke algebra in the rank one case. II. The spherical subalgebra. SIGMA 4, 052 (2008). arXiv:0711.2320

    MathSciNet  MATH  Google Scholar 

  19. Koornwinder, T., Mazzocco, M.: Dualities in the \(q\)-Askey scheme and degenerated DAHA. arXiv:1803.02775

  20. Mazzocco, M.: Confluences of the Painlevé equations, Cherednik algebras and q-Askey scheme. Nonlinearity 29, 2565 (2016). arXiv:1307.6140

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Nomura, K., Terwilliger, P.: Linear transformations that are tridiagonal with respect to both eigenbases of a Leonard pair. Linear Alg. Appl. 420, 198–207 (2007). arXiv:math.RA/0605316

    Article  MathSciNet  MATH  Google Scholar 

  22. Onsager, L.: Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65, 117–149 (1944)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Post, S.: Racah polynomials and recoupling schemes of \(su(1, 1)\). SIGMA 11, 057 (2015)

    MathSciNet  MATH  Google Scholar 

  24. Post, S., Walter, A.: A higher rank extension of the Askey–Wilson algebra. arXiv:1705.01860

  25. Roan, S.S.: Onsager Algebra, Loop Algebra and Chiral Potts Model, MPI 91–70. Max-Planck-Institut für Mathematik, Bonn (1991)

    Google Scholar 

  26. Skrypnyk, T.: Generalized quantum Gaudin spin chains, involutive automorphisms and “twisted” classical r-matrices. J. Math. Phys. 47, 033511 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Skrypnyk, T.: Infinite-dimensional Lie algebras, classical r-matrices, and Lax operators: two approaches. J. Math. Phys. 54, 103507 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Terwilliger, P.: Leonard pairs and dual polynomial sequences. Preprint available at: https://www.math.wisc.edu/~terwilli/lphistory.html

  29. Terwilliger, P., Vidunas, R.: Leonard pairs and the Askey–Wilson relations. J. Algebra Appl. 3, 411–426 (2004). arXiv:math.QA/0305356

    Article  MathSciNet  MATH  Google Scholar 

  30. Terwilliger, P.: The subconstituent algebra of an association scheme. III. J. Algebraic Combin. 2(2), 177–210 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  31. Terwilliger, P.: Two relations that generalize the q-Serre relations and the Dolan–Grady relations. In: Kirillov, A.N., Tsuchiya, A., Umemura, H. (eds.) Proceedings of the Nagoya 1999 International Workshop on Physics and Combinatorics, pp. 377–398. arXiv:math.QA/0307016

  32. Terwilliger, P.: The universal Askey–Wilson algebra. SIGMA 7, 069 (2011). arXiv:1104.2813v2

    MathSciNet  MATH  Google Scholar 

  33. Terwilliger, P.: The universal Askey–Wilson Algebra and DAHA of type \((C_1^\vee, C_1)\). SIGMA 9, 047 (2013). arXiv:1202.4673

    MATH  Google Scholar 

  34. Terwilliger, P.: The Lusztig automorphism of the q-Onsager algebra. J Algebra 506 56-75. arXiv:1706.05546

  35. Wiegmann, P., Zabrodin, A.: Algebraization of difference eigenvalue equations related to \(U_q(sl_2)\). Nucl. Phys. B 451, 699–724 (1995). arXiv:cond-mat/9501129

    Article  ADS  MATH  Google Scholar 

  36. Zhedanov, A.S.: “Hidden symmetry” of the Askey–Wilson polynomials. Theor. Math. Phys. 89, 1146–1157 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhedanov, A.S.: Quantum \(SU_q(2)\) algebra: “Cartesian” Version and Overlaps. Mod. Phys. Lett. A 7, 1589 (1992)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

We thank S. Belliard for discussions, and P. Terwilliger and A. Zhedanov for comments and suggestions. P.B. and N.C. are supported by C.N.R.S. N.C. thanks the IDP for hospitality, where part of this work has been done.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Crampé.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

From (4.9) to (4.11), for \(k=0,1,2\) one has:

$$\begin{aligned} A_0= & {} {\mathcal {W}}_0{,}\quad A_1={\mathcal {W}}_1{,}\quad G_1=-\frac{1}{4}\tilde{{\mathcal {G}}}_{1}{,}\\ A_{-1}= & {} 2{\mathcal {W}}_{-1}-{\mathcal {W}}_1{,}\quad A_{2}=2{\mathcal {W}}_{2}-{\mathcal {W}}_0{,}\quad G_2=-\frac{1}{2}\tilde{{\mathcal {G}}}_{2}{,}\\ A_{-2}= & {} 4{\mathcal {W}}_{-2}-{\mathcal {W}}_0-2{\mathcal {W}}_{2}{,}\quad A_{3}=4{\mathcal {W}}_{3}-{\mathcal {W}}_1-2{\mathcal {W}}_{-1}{,}\quad G_3=-\tilde{{\mathcal {G}}}_{3} + \frac{1}{4}\tilde{{\mathcal {G}}}_{1} {.} \end{aligned}$$

Conversely, from (4.12)–(4.13) for \(k=1,2\) one has:

$$\begin{aligned} {\mathcal {W}}_{-1}= & {} \frac{A_1 + A_{-1}}{2}{,} \quad {\mathcal {W}}_{2}= \frac{A_0 + A_{2}}{2}{,}\quad \tilde{{\mathcal {G}}}_{2}=-2G_2{,} \\ {\mathcal {W}}_{-2}= & {} \frac{A_2 + 2A_{0} + A_{-2}}{4}{,} \quad {\mathcal {W}}_{2}= \frac{A_3 + 2A_{1} + A_{-1}}{4},\quad \tilde{{\mathcal {G}}}_{3}=-G_3 -2G_1\ . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baseilhac, P., Crampé, N. FRT presentation of classical Askey–Wilson algebras. Lett Math Phys 109, 2187–2207 (2019). https://doi.org/10.1007/s11005-019-01182-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-019-01182-y

Keywords

Mathematics Subject Classification

Navigation