Skip to main content
Log in

Geometry and 2-Hilbert space for nonassociative magnetic translations

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We suggest a geometric approach to quantisation of the twisted Poisson structure underlying the dynamics of charged particles in fields of generic smooth distributions of magnetic charge, and dually of closed strings in locally non-geometric flux backgrounds, which naturally allows for representations of nonassociative magnetic translation operators. We show how one can use the 2-Hilbert space of sections of a bundle gerbe in a putative framework for canonical quantisation. We define a parallel transport on bundle gerbes on \({\mathbb {R}}^d\) and show that it naturally furnishes weak projective 2-representations of the translation group on this 2-Hilbert space. We obtain a notion of covariant derivative on a bundle gerbe and a novel perspective on the fake curvature condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. For the construction of the 2-Hilbert space of sections it is important to work with categorified line bundles instead of principal bundles, since it allows the existence of non-invertible morphisms.

  2. A section of a Hermitian vector bundle is parallel if it is annihilated by the covariant derivative.

  3. This space is finite-dimensional since the dimension of the space of parallel sections of a vector bundle on a path-connected manifold is bounded from above by the rank of the vector bundle.

  4. See [13] for the corresponding definitions.

  5. The element \(\imath \) encodes the coherence 2-isomorphism \(\omega (1)\Longrightarrow \text {id}\).

  6. See [31] for a treatment of the Dirac monopole field in this setting.

References

  1. Bojowald, M., Brahma, S., Büyükçam, U., Strobl, T.: States in nonassociative quantum mechanics: uncertainty relations and semiclassical evolution. J. High Energy Phys. 03, 93 (2015). arXiv:1411.3710

    Article  MATH  Google Scholar 

  2. Blumenhagen, R., Deser, A., Lüst, D., Plauschinn, E., Rennecke, F.: Non-geometric fluxes, asymmetric strings and nonassociative geometry. J. Phys. A 44, 385401 (2011). arXiv:1106.0316

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bakas, I., Lüst, D.: 3-Cocycles, nonassociative star products and the magnetic paradigm of \(R\)-flux string vacua. J. High Energy Phys. 1, 171 (2014). arXiv:1309.3172

    Article  ADS  Google Scholar 

  4. Blumenhagen, R., Plauschinn, E.: Nonassociative gravity in string theory? J. Phys. A 44, 015401 (2011). arXiv:1010.1263

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Baez, J.C., Shulman, M.: Lectures on \(n\)-categories and cohomology. In: Towards Higher Categories, pp. 1–68. Springer, New York (2006). arXiv:math/0608420

  6. Bunke, U., Nikolaus, T., Völkl, M.: Differential cohomology theories as sheaves of spectra. J. Homot. Relat. Struct. 11(1), 1–66 (2016). arXiv:1311.3188

    Article  MathSciNet  MATH  Google Scholar 

  7. Bunk, S., Szabo, R.J.: Fluxes, bundle gerbes and 2-Hilbert spaces. Lett. Math. Phys. 107(10), 1877–1918 (2017). arXiv:1612.01878

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Barnes, G.E., Schenkel, A., Szabo, R.J.: Nonassociative geometry in quasi-Hopf representation categories I: bimodules and their internal homomorphisms. J. Geom. Phys. 89, 111–152 (2015). arXiv:1409.6331

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Brylinski, J.-L.: Loop spaces, characteristic classes and geometric quantization. In: Modern Birkhäuser Classics, 1st Edn., vol. 107. Birkhäuser (2008). https://doi.org/10.1007/978-0-8176-4731-5

  10. Bunk, S., Saemann, C., Szabo, R.J.: The 2-Hilbert space of a prequantum bundle gerbe. Rev. Math. Phys. 30(1), 1850001 (2018). arXiv:1608.08455

    Article  MathSciNet  MATH  Google Scholar 

  11. Bunk, S.: Categorical structures on bundle gerbes and higher geometric prequantisation. Ph.D. thesis, Heriot-Watt University, Edinburgh, p. 139 (2017). arXiv:1709.06174

  12. Fiorenza, D., Valentino, A.: Boundary conditions for topological quantum field theories, anomalies and projective modular functors. Commun. Math. Phys. 338(3), 1043–1074 (2015). arXiv:1409.5723

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Gordon, R., Power, A.J., Street, R.: Coherence for tricategories. Mem. Am. Math. Soc. 117(558), vi+81 (1995)

    MathSciNet  MATH  Google Scholar 

  14. Günaydin, M., Zumino, B.: Magnetic charge and nonassociative algebras. In: Old and New Problems in Fundamental Physics: Meeting in Honour of G. C. Wick, pp. 43–53. Scuola Normale Superiore, Pisa (1986)

  15. Hannabuss, K.C.: T-duality and the bulk-boundary correspondence. J. Geom. Phys. 124, 421–435 (2018). arXiv:1704.00278

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Hesse, J., Schweigert, C., Valentino, A.: Frobenius algebras and homotopy fixed points of group actions on bicategories. Theory Appl. Categ. 32, 652–681 (2017). arXiv:1607.05148

    MathSciNet  MATH  Google Scholar 

  17. Hopkins, M.J., Singer, I.M.: Quadratic functions in geometry, topology, and \(M\)-theory. J. Differ. Geom. 70(3), 329–452 (2005). arXiv:math/0211216

    Article  MathSciNet  MATH  Google Scholar 

  18. Iftimie, V., Măntoiu, M., Purice, R.: Commutator criteria for magnetic pseudodifferential operators. Commun. Part. Differ. Equ. 35, 1058–1094 (2010). arXiv:0902.0513

    Article  MathSciNet  MATH  Google Scholar 

  19. Jackiw, R.: 3-Cocycle in mathematics and physics. Phys. Rev. Lett. 54, 159–162 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  20. Johnson-Freyd, T., Scheimbauer, C.: (Op)lax natural transformations, twisted quantum field theories, and "even higher" Morita categories. Adv. Math. 307, 147–223 (2017). arXiv:1502.06526

    Article  MathSciNet  MATH  Google Scholar 

  21. Kupriyanov, V.G., Szabo, R.J.: Symplectic realisation of electric charge in fields of monopole distributions (2018). arXiv:1803.00405

  22. Kupriyanov, V.G., Vassilevich, D.V.: Nonassociative Weyl star products. J. High Energy Phys. 09, 103 (2015). arXiv:1506.02329

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Lüst, D.: T-duality and closed string noncommutative (doubled) geometry. J. High Energy Phys. 12, 084 (2010). arXiv:1010.1361

    Article  MATH  Google Scholar 

  24. Mac Lane, S.: Categories for the Working Mathematician. Springer, New York (1998)

    MATH  Google Scholar 

  25. Măntoiu, M., Purice, R.: The magnetic Weyl calculus. J. Math. Phys. 45, 1394–1417 (2004). arXiv:math-ph/0401043

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Müller, L., Szabo, R.J.: Extended quantum field theory, index theory and the parity anomaly (2017). arXiv:1709.03860

  27. Mylonas, D., Schupp, P., Szabo, R.J.: Membrane sigma-models and quantisation of non-geometric flux backgrounds. J. High Energy Phys. 09, 012 (2012). arXiv:1207.0926

    Article  ADS  MATH  Google Scholar 

  28. Mylonas, D., Schupp, P., Szabo, R.J.: Non-geometric fluxes, quasi-Hopf twist deformations and nonassociative quantum mechanics. J. Math. Phys. 55, 122301 (2014). arXiv:1312.1621

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Murray, M.K.: Bundle gerbes. J. Lond. Math. Soc. 54, 403–416 (1996). arXiv:dg-ga/9407015

    Article  MathSciNet  MATH  Google Scholar 

  30. Nikolaus, T., Schweigert, C.: Equivariance in higher geometry. Adv. Math. 226(4), 3367–3408 (2011). arXiv:1004.4558

    Article  MathSciNet  MATH  Google Scholar 

  31. Soloviev, M.A.: Dirac’s magnetic monopole and the Kontsevich star product. J. Phys. A 51(9), 095205 (2018). arXiv:1708.05030

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Szabo, R.J.: Magnetic monopoles and nonassociative deformations of quantum theory. J. Phys. Conf. Ser. 965, 012041 (2018). arXiv:1709.10080

    Article  Google Scholar 

  33. Waldorf, K.: More morphisms between bundle gerbes. Theory Appl. Categ. 18(9), 240–273 (2007). arXiv:math/0702652

    MathSciNet  MATH  Google Scholar 

  34. Wu, T.T., Yang, C.N.: Dirac monopole without strings: monopole harmonics. Nucl. Phys. B 107, 365–380 (1976)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Marco Benini and Lennart Schmidt for helpful discussions. This work was supported by the COST Action MP1405 ‘Quantum Structure of Spacetime’, funded by the European Cooperation in Science and Technology (COST). The work of S.B. was partially supported by the RTG 1670 ‘Mathematics Inspired by String Theory and Quantum Field Theory’. The work of L.M. was supported by the Doctoral Training Grant ST/N509099/1 from the UK Science and Technology Facilities Council (STFC). The work of R.J.S. was supported in part by the STFC Consolidated Grant ST/P000363/1 ‘Particle Theory at the Higgs Centre’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Müller .

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bunk, S., Müller , L. & Szabo, R.J. Geometry and 2-Hilbert space for nonassociative magnetic translations. Lett Math Phys 109, 1827–1866 (2019). https://doi.org/10.1007/s11005-019-01160-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-019-01160-4

Keywords

Mathematics Subject Classification

Navigation