Skip to main content
Log in

Crystallographic bulk-edge correspondence: glide reflections and twisted mod 2 indices

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

A 2-torsion topological phase exists for Hamiltonians symmetric under the wallpaper group with glide reflection symmetry, corresponding to the unorientable cycle of the Klein bottle fundamental domain. We prove a mod 2 twisted Toeplitz index theorem, which implies a bulk-edge correspondence between this bulk phase and the exotic topological zero modes that it acquires along a boundary glide axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. This is related to decay of the hopping terms as the hopping range goes to infinity.

  2. In Fourier space, this is effected by the large gauge transformation [50] \(\begin{pmatrix} e^{{\mathrm {i}}k} &{} 0 \\ 0 &{} 1\end{pmatrix}\) corresponding to shifting the origin of the A lattice by one unit.

  3. More precisely, the number of unpaired A modes minus the number of unpaired B modes.

  4. We use the semicolon for elements \((n_y;m_x)\in {\textsf {pg}}\) to avoid confusion with elements \((n_y,n_x)\in N\). We also use \(n_y\) instead of \(n_x\) for the first coordinate so that the diagrams that follow are more convenient to draw.

  5. Not to be confused with the black/brown sublattice grading by the operator \({\textsf {S}}\).

References

  1. Atiyah, M.F.: Bott periodicity and the index of elliptic operators. Q. J. Math. Oxf. Ser. 2(19), 113–140 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  2. Atiyah, M.F.: Algebraic topology and operators in Hilbert space. In: Taam, C.T. (ed.) Lectures in Modern Analysis and Applications I. Lecture Notes in Mathematics, vol. 103, pp. 101–121. Springer, Berlin (1969)

    Chapter  Google Scholar 

  3. Atiyah, M.F., Singer, I.M.: The index of elliptic operators I. Ann. Math. 87(3), 484–530 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bradlyn, B., Elcoro, L., Cano, J., Vergniory, M.G., Wang, Z., Felser, C., Aroyo, M.I., Bernevig, B.A.: Topological quantum chemistry. Nature 547, 298–305 (2017)

    Article  ADS  Google Scholar 

  5. Benameur, M.-T.: Noncommutative geometry and abstract integration theory. In: Cardona, A., Paycha, S., Ocampo, H. (eds.) Geometrical and Topological Methods for Quantum Field Theory, pp. 157–227. World Scientific, River Edge (2003)

    Chapter  MATH  Google Scholar 

  6. Coburn, L.A.: The \(C^*\)-algebra generated by an isometry. II. Trans. Am. Math. Soc. 137, 211–217 (1969)

    MathSciNet  MATH  Google Scholar 

  7. Conway, J.H., Friedrichs, O.D., Huson, D.H., Thurston, W.P.: On three-dimensional orbifolds and space groups. Beiträge Algebra Geom. 42(2), 475–507 (2001)

    MathSciNet  MATH  Google Scholar 

  8. Cuntz, J.: \(K\)-theory and \(C^*\)-algebras. In: Bak, A. (ed.) Algebraic \(K\)-Theory, Number Theory, Geometry, and Analysis. Lecture Notes in Mathematics, vol. 1046, pp. 55–79. Springer, Berlin (1984)

    Google Scholar 

  9. Davidson, K.R.: \(C^*\)-algebras by example. Fields Inst. Monogr., vol. 6. Providence, RI (1996)

  10. de Monvel, L.B.: On the index of Toeplitz operators of several complex variables. Invent. Math. 50, 249–272 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  11. De Nittis, G., Gomi, K.: The cohomological nature of the Fu–Kane–Mele invariant. J. Geom. Phys. 124, 124–164 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Fang, C., Fu, L.: New classes of three-dimensional topological crystalline insulators: nonsymmorphic and magnetic. Phys. Rev. B 91, 161105 (2015)

    Article  ADS  Google Scholar 

  13. Freed, D.S., Moore, G.: Twisted equivariant matter. Ann. Henri Poincaré 14(8), 1927–2023 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Gohberg, I.C., Krein, M.G.: The basic propositions on defect numbers, root numbers and indices of linear operators. Am. Math. Soc. Transl. 2(13), 185–264 (1960)

    MathSciNet  Google Scholar 

  15. Gomi, K.: Twists on the torus equivariant under the 2-dimensional crystallographic point groups. SIGMA Symmetry Integr. Geom. Methods Appl. 13, 014 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Gomi, K.: Freed–Moore \(K\)-theory. arXiv:1705.09134

  17. Gomi, K.: A variant of \(K\)-theory and topological T-duality for real circle bundles. Commun. Math. Phys. 334(2), 923–975 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Gomi, K., Thiang, G.C.: Crystallographic T-duality. arXiv:1806.11385

  19. Haldane, F.D.M.: Model for a quantum Hall effect without Landau levels: condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 61(18), 2015–2018 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  20. Halperin, B.I.: Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential. Phys. Rev. B 25, 2185 (1982)

    Article  ADS  Google Scholar 

  21. Hannabuss, K., Mathai, V., Thiang, G.C.: T-duality simplifies bulk-boundary correspondence: the noncommutative case. Lett. Math. Phys. 108(5), 1163–1201 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Hatsugai, Y.: Chern number and edge states in the integer quantum Hall effect. Phys. Rev. Lett. 71, 3697 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Hatsugai, Y.: Bulk-edge correspondence in graphene with/without magnetic field: Chiral symmetry, Dirac fermions and Edge states. Solid State Commun. 149, 1061 (2009)

    Article  ADS  Google Scholar 

  24. Hsieh, D., et al.: A tunable topological insulator in the spin helical Dirac transport regime. Nature 460(7259), 1101–1105 (2009)

    Article  ADS  Google Scholar 

  25. Karoubi, M.: \(K\)-theory: an introduction. In: Grundlehren math. Wiss., vol 226. Springer, Berlin (1978)

  26. Karoubi, M.: Twisted bundles and twisted \(K\)-theory. In: Cortinãs, G. (ed.) Topics in noncommutative geometry, Clay Math. Proc., vol. 16, pp. 223–257. Providence, RI (2012)

  27. Kellendonk, J., Richter, T., Schulz-Baldes, H.: Edge current channels and Chern numbers in the integer quantum Hall effect. Rev. Math. Phys. 14(01), 87–119 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kitaev, A.: Periodic table for topological insulators and superconductors. AIP Conf. Ser. 1134, 22–30 (2009)

    Article  ADS  MATH  Google Scholar 

  29. Kopsky, V., Litvin, D.B., eds.: International Tables for Crystallography, Volume E: Subperiodic groups, E (5th ed.), Berlin, New York (2002)

  30. Kruthoff, J., de Boer, J., van Wezel, J., Kane, C.L., Slager, R.-J.: Topological classification of crystalline insulators through band structure combinatorics. Phys. Rev. X 7, 041069 (2017)

    Google Scholar 

  31. Kubota, Y.: Notes on twisted equivariant K-theory for \(C^*\)-algebras. Int. J. Math. 27(6), 1650058 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kubota, Y.: Controlled topological phases and bulk-edge correspondence. Commun. Math. Phys. 349(2), 493–525 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Lück, W., Stamm, R.: Computations of \(K\)- and \(L\)-theory of cocompact planar groups. \(K\)-theory 21, 249–292 (2000)

  34. Mendez-Diez, S., Rosenberg, J.: \(K\)-theoretic matching of brane charges in S- and U-duality. Adv. Theor. Math. Phys. 16(6), 1591–1618 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Michel, L., Zak, J.: Connectivity of energy bands in crystals. Phys. Rev. B 59, 5998 (1999)

    Article  ADS  Google Scholar 

  36. Mislin, G.: Equivariant \(K\)-homology of the classifying space for proper actions. In: Proper group actions and the Baum–Connes conjecture, pp. 1–78. Birkhäuser, Basel (2003)

  37. Moutuou, E.M.: Twisted groupoid \(KR\)-Theory. Ph.D. thesis, Université de Lorraine (2012). http://www.theses.fr/2012LORR0042

  38. Murphy, G.J.: \(C\)*-Algebras and Operator Theory. Academic Press, Boston (1990)

    MATH  Google Scholar 

  39. Phillips, N.C.: The Toeplitz operator proof of noncommutative Bott periodicity. J. Austral. Math. Soc. (Ser. A) 53, 229–251 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  40. Pimsner, M., Voiculescu, D.: Exact sequences for \(K\)-groups and \(EXT\)-groups of certain cross-product \(C^*\)-algebras. J. Oper. Theory 4, 93–118 (1980)

    MathSciNet  MATH  Google Scholar 

  41. Prodan, E., Schulz-Baldes, H.: Bulk and Boundary Invariants for Complex Topological Insulators: From \(K\)-Theory to Physics. Springer, Basel (2016)

    Book  MATH  Google Scholar 

  42. Prodan, E., Schulz-Baldes, H.: Generalized Connes–Chern characters in \(KK\)-theory with an application to weak invariants of topological insulators. Rev. Math. Phys. 28(10), 1650024 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  43. Ryu, S., Hatsugai, Y.: Topological origin of zero-energy edge states in particle-hole symmetric systems. Phys. Rev. Lett. 89, 077002 (2002)

    Article  ADS  Google Scholar 

  44. Schneider, A.: Equivariant T-duality of Locally Compact Abelian Groups. arXiv:0906.3734

  45. Shiozaki, K., Sato, M., Gomi, K.: \(\mathbb{Z}_2\)-topology in nonsymmorphic crystalline insulators: Möbius twist in surface states. Phys. Rev. B 91, 155120 (2015)

    Article  ADS  Google Scholar 

  46. Shiozaki, K., Sato, M., Gomi, K.: Topological crystalline materials: general formulation, module structure, and wallpaper groups. Phys. Rev. B 95(23), 235425 (2017)

    Article  ADS  Google Scholar 

  47. Stolz, S.: Concordance classes of positive scalar curtavure metrics. Preprint https://www3.nd.edu/~stolz/preprint.html. Accessed 9 Aug 2018

  48. Taylor, K.F.: \(C^*\)-algebras of crystal groups. Oper. Theory Adv. Appl. 41, 511–518 (1989)

    MathSciNet  MATH  Google Scholar 

  49. Thiang, G.C.: On the \(K\)-theoretic classification of topological phases of matter. Ann. Henri Poincaré 17(4), 757–794 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Thiang, G.C.: Topological phases: isomorphism, homotopy and K-theory. Int. J. Geom. Methods Mod. Phys. 12, 1550098 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  51. Valette, A.: Introduction to the Baum–Connes conjecture. Lectures Math. ETH Zürich. Birkhäuser Verlag, Basel (2002)

  52. Wan, X., Turner, A.M., Vishwanath, A., Savrasov, S.Y.: Topological semimetal and fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B. 83, 205101 (2011)

    Article  ADS  Google Scholar 

  53. Wieder, B.J.: Wallpaper fermions and the nonsymmorphic dirac insulator. Science 361(6399), 246–251 (2018)

    Article  ADS  Google Scholar 

  54. Witten, E.: D-branes and \(K\)-theory. J. High Energy Phys. 12, 019 (1998)

    Article  ADS  MATH  Google Scholar 

  55. Xu, S.-Y.: Discovery of a Weyl Fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

G.C.T. is supported by ARC grant DE170100149 and would like to thank G. De Nittis, V. Mathai and K. Hannabuss for helpful discussions. He also acknowledges H.-H. Lee for his kind hospitality at the Seoul National University, where part of this work was completed. K.G. is supported by JSPS KAKENHI Grant Number JP15K04871, and thanks I. Sasaki, M. Furuta and K. Shiozaki for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo Chuan Thiang.

Appendices

A Appendix: Computation of \(K^{\bullet +\widehat{\nu }}_{{\mathbb {Z}}_2}({\mathcal {B}})\) and \(K^{\bullet + c + \widehat{\nu }}_{\mathbb {Z}_2}(\mathcal {B}_x)\)

1.1 Computation of \(K^{\bullet +\widehat{\nu }}_{{\mathbb {Z}}_2}({\mathcal {B}})\)

Let \(\mathcal {B}_y = \mathbb {R}/2\pi \mathbb {Z}\) be the circle with the involution \(k_y \mapsto -k_y\), and \(R({\mathbb {Z}}_2)={\mathbb {Z}}[t]/(1-t^2)\) be the representation ring of \({\mathbb {Z}}_2\) with t the sign representation. The following result is known, for example, in [34]:

Lemma A.1

We have the following identifications of \(R(\mathbb {Z}_2)\)-modules

$$\begin{aligned} K^0_{\mathbb {Z}_2}(\mathcal {B}_y)&\cong \overbrace{R(\mathbb {Z}_2)}^{\mathbb {Z}^2} \oplus \overbrace{(1 - t)}^{\mathbb {Z}},&K^1_{\mathbb {Z}_2}(\mathcal {B}_y)&= 0. \end{aligned}$$

Proof

To apply the Mayer–Vietoris exact sequence, let us consider the \(\mathbb {Z}_2\)-invariant subspaces U and V given by

$$\begin{aligned} U&= \{ k_y \in \mathcal {B}_y |\ -\pi /2 \le k_y \le \pi /2 \},&V&= \{ k_y \in \mathcal {B}_y |\ \pi /2 \le k_y \le 3\pi /2 \}. \end{aligned}$$

These spaces are equivariantly contractible, so that

$$\begin{aligned} K^n_{\mathbb {Z}_2}(U) \cong K^n_{\mathbb {Z}_2}(V) \cong K^n_{\mathbb {Z}_2}({\mathrm {pt}}) \cong \left\{ \begin{array}{ll} R(\mathbb {Z}_2) &{}\quad (n = 0), \\ 0 &{}\quad (n = 1). \end{array}\right. \end{aligned}$$

The intersection \(U \cap V\) is the space consisting of two points with free action of \(\mathbb {Z}_2\), so that

$$\begin{aligned} K^n_{\mathbb {Z}_2}(U \cap V) \cong K^n_{\mathbb {Z}_2}({\mathrm {pt}}\sqcup {\mathrm {pt}}) \cong K^n({\mathrm {pt}}) \cong \left\{ \begin{array}{ll} \mathbb {Z}&{}\quad (n = 0), \\ 0 &{}\quad (n = 1). \end{array}\right. \end{aligned}$$

Now, the Mayer–Vietoris exact sequence is

figure k

The homomorphism \(\Delta \) is realised as \(\Delta (u, v) = i_U^*u - i_V^*v\), where \(i_U^*\) and \(i_V^*\) are induced from the inclusions \(i_U : U \cap V \rightarrow U\) and \(i_V : U \cap V \rightarrow V\). In the present case, we can identify \(i^*_U\) as well as \(i^*_V\) with the “dimension” \(R(\mathbb {Z}_2) \rightarrow \mathbb {Z}\) given by \(f(t) \mapsto f(1)\). This is surjective, and so is \(\Delta \). As a result, we get \(K^1_{\mathbb {Z}_2}(\mathcal {B}_y) \cong {\mathrm {Coker}}(\Delta ) = 0\). We also get \(K^0_{\mathbb {Z}_2}(\mathcal {B}_x) \cong {\mathrm {Ker}}(\Delta ) \cong \mathbb {Z}^3\). As a basis of this abelian group, we can choose

$$\begin{aligned} \{ (1, 1), (t, t), (0, 1 - t) \} \subset R(\mathbb {Z}_2) \oplus R(\mathbb {Z}_2). \end{aligned}$$

The former two base elements generate the \(R(\mathbb {Z}_2)\)-module \(R(\mathbb {Z}_2)\), whereas the latter element \((0, 1 - t)\) generates the \(R(\mathbb {Z}_2)\)-module \((1 - t)\). \(\square \)

Let \(\mathcal {B} = \mathcal {B}_x \times \mathcal {B}_y\) be the 2-dimensional torus \((\mathbb {R}/2\pi \mathbb {Z}) \times (\mathbb {R}/2\pi \mathbb {Z})\) with the \(\mathbb {Z}_2\)-action \((k_x, k_y) \mapsto (k_x, -k_y)\), and \(\widehat{\nu } \in Z^2(\mathbb {Z}_2, C(\mathcal {B}, U(1)))\) the group 2-cocycle (7) induced from the wallpaper group pg.

Proposition A.2

We have the following identifications of \(R(\mathbb {Z}_2)\)-modules

$$\begin{aligned} K^{0 + \widehat{\nu }}_{\mathbb {Z}_2}(\mathcal {B})&\cong \overbrace{(1 + t)}^{\mathbb {Z}},&K^{1 + \widehat{\nu }}_{\mathbb {Z}_2}(\mathcal {B})&\cong \overbrace{(1 + t)}^{\mathbb {Z}} \oplus \,\mathbb {Z}/2. \end{aligned}$$

where \(\mathbb {Z}/2\) is the unique \(R(\mathbb {Z}_2)\)-module whose underlying abelian group is \(\mathbb {Z}/2\).

Proof

We cover \(\mathcal {B}\) by the \(\mathbb {Z}_2\)-invariant subspaces

$$\begin{aligned} U&= \{ k_x \in \mathcal {B}_x |\ -\pi /2 \le k_x \le \pi /2 \} \times \mathcal {B}_y, \\ V&= \{ k_x \in \mathcal {B}_x |\ \pi /2 \le k_x \le 3\pi /2 \} \times \mathcal {B}_y, \end{aligned}$$

each of which is equivariantly homotopic to \(\mathcal {B}_y\). Their intersection is identified with the disjoint union \(U \cap V = \mathcal {B}_y ^+ \sqcup \mathcal {B}_y^-\) of two copies \(\mathcal {B}_y^{\pm }\) of \(\mathcal {B}_y\). The Mayer–Vietoris exact sequence associated to this cover is

figure l

where, for example, \(\widehat{\nu }|_U \in Z^2(\mathbb {Z}_2, C(U, U(1)))\) is the restriction of \(\widehat{\nu }\) to \(U \subset \mathcal {B}\), and \(\Delta \) is realised as \(\Delta (u, v) = i_U^*u - i_V^*v\) by using the inclusions \(i_U : U \cap V \rightarrow U\) and \(i_V : U \cap V \rightarrow V\). The restricted cocycles can be trivialised, and a choice of these trivialisations induces the isomorphisms

$$\begin{aligned} K^{n + \widehat{\nu }|_{U}}_{\mathbb {Z}_2}(U)&\cong K^{n}_{\mathbb {Z}_2}(U) \cong K^n_{\mathbb {Z}_2}(\mathcal {B}_y), \\ K^{n + \widehat{\nu }|_{V}}_{\mathbb {Z}_2}(V)&\cong K^{n}_{\mathbb {Z}_2}(V) \cong K^n_{\mathbb {Z}_2}(\mathcal {B}_y), \\ K^{n + \widehat{\nu }|_{U \cap V}}_{\mathbb {Z}_2}(U \cap V)&\cong K^{n}_{\mathbb {Z}_2}(U \cap V) \cong K^n_{\mathbb {Z}_2}(\mathcal {B}_y^+ \sqcup \mathcal {B}_y^-). \end{aligned}$$

Notice, however, that there is no (global) trivialisation of \(\widehat{\nu }\). At best, we can choose the (local) trivialisations on U, V and \(U \cap V\) so that the trivialisations on U and V agree with that on \(\mathcal {B}_y^+\) and their discrepancy on \(\mathcal {B}_y^-\) is the sign representation that is a group 1-cocycle in \(Z^1(\mathbb {Z}_2, U(1))\). This sign representation acts on \(K^n_{\mathbb {Z}_2}(\mathcal {B}_y^-)\) as an automorphism and is realised by multiplication by \(t \in R(\mathbb {Z}_2)\). Taking the effects of trivialisations into account, we can identify \(\Delta \) as the homomorphism

$$\begin{aligned} \Delta&: K^0_{\mathbb {Z}_2}(\mathcal {B}_x) \oplus K^0_{\mathbb {Z}_2}(\mathcal {B}_x) \rightarrow K^0_{\mathbb {Z}_2}(\mathcal {B}_x^+) \oplus K^0_{\mathbb {Z}_2}(\mathcal {B}_x^-),&\Delta (u, v)&= (u - v, u - tv). \end{aligned}$$

With this expression, the Mayer–Vietoris sequence is folded to

$$\begin{aligned} 0 \rightarrow K^{0 + \widehat{\nu }}_{\mathbb {Z}_2}(\mathcal {B}) \rightarrow K^0_{\mathbb {Z}_2}(\mathcal {B}_y) \overset{\delta }{\rightarrow } K^0_{\mathbb {Z}_2}(\mathcal {B}_y) \rightarrow K^{1 + \widehat{\nu }}_{\mathbb {Z}_2}(\mathcal {B}) \rightarrow 0, \end{aligned}$$

in which \(\delta (w) = (1 - t)w\). Now, we can readily see that

$$\begin{aligned} K^{0 + \widehat{\nu }}_{\mathbb {Z}_2}(\mathcal {B})&\cong (1 + t), \\ K^{1 + \widehat{\nu }}_{\mathbb {Z}_2}(\mathcal {B})&\cong R(\mathbb {Z}_2)/(1 - t) \oplus (1 - t)/(2 - 2t) \cong (1 + t) \oplus \mathbb {Z}/2, \end{aligned}$$

as claimed. \(\square \)

1.2 Computation of \(K^{\bullet + c + \widehat{\nu }}_{\mathbb {Z}_2}(\mathcal {B}_x)\)

As in Sect. 6.2, let \(\mathcal {B}_x\) be the circle with trivial involution, \(c:{\mathbb {Z}}_2\rightarrow {\mathbb {Z}}_2\) the identity map, and \(\widehat{\nu }\) the cocycle (13).

Proposition A.3

We have the following identifications of \(R(\mathbb {Z}_2)\)-modules

$$\begin{aligned} K^{0 + c + \widehat{\nu }}_{\mathbb {Z}_2}(\mathcal {B}_x)&\cong \mathbb {Z}/2,&K^{1 + c + \widehat{\nu }}_{\mathbb {Z}_2}(\mathcal {B}_x)&=0 \end{aligned}$$

where \(\mathbb {Z}/2\) is the unique \(R(\mathbb {Z}_2)\)-module whose underlying abelian group is \(\mathbb {Z}/2\).

Proof

The computation is similar to that in the proof of Proposition A.2: we cover \(\mathcal {B}_x\) by two closed intervals U and V so that \(U \cap V \cong {\mathrm {pt}} \sqcup {\mathrm {pt}}\), which are invariant with respect to the trivial \(\mathbb {Z}_2\)-actions. Trivialising the twists \(\widehat{\nu }|_U\), \(\widehat{\nu }|_V\) and \(\widehat{\nu }|_{U \cap V}\), we have

$$\begin{aligned} K^{n + c + \widehat{\nu }|_{U}}_{\mathbb {Z}_2}(U)&\cong K^{n + c}_{\mathbb {Z}_2}(U) \cong K^{n + c}_{\mathbb {Z}_2}({\mathrm {pt}}), \\ K^{n + c + \widehat{\nu }|_{V}}_{\mathbb {Z}_2}(V)&\cong K^{c + n}_{\mathbb {Z}_2}(V) \cong K^{c + n}_{\mathbb {Z}_2}({\mathrm {pt}}), \\ K^{n + c + \widehat{\nu }|_{U \cap V}}_{\mathbb {Z}_2}(U \cap V)&\cong K^{c + n}_{\mathbb {Z}_2}(U \cap V) \cong K^{c + n}_{\mathbb {Z}_2}({\mathrm {pt}}) \oplus K^{c + n}_{\mathbb {Z}_2}({\mathrm {pt}}). \end{aligned}$$

The K-theory \(K^{c + n}_{\mathbb {Z}_2}({\mathrm {pt}})\) twisted by the identity homomorphism \(c : \mathbb {Z}_2 \rightarrow \mathbb {Z}_2\) is isomorphic to \(K^n_{\pm }({\mathrm {pt}})\) in [54], and is known to be [17]

$$\begin{aligned} K^{c + 0}_{\mathbb {Z}_2}({\mathrm {pt}})&= 0,&K^{c + 1}_{\mathbb {Z}_2}({\mathrm {pt}}) \cong \overbrace{(1 - t)}^{\mathbb {Z}}. \end{aligned}$$

Taking care of the choice of the local trivialisations, we can reduce the Mayer–Vietoris exact sequence to

$$\begin{aligned} 0 \rightarrow K^{1 + c + \widehat{\nu }}_{\mathbb {Z}_2}(\mathcal {B}_x) \rightarrow \overbrace{(1 - t)}^{{\mathbb {Z}}} \overset{1 - t}{\rightarrow } \overbrace{(1 - t)}^{{\mathbb {Z}}} \rightarrow K^{0 + c + \widehat{\nu }}_{\mathbb {Z}_2}(\mathcal {B}_x) \rightarrow 0, \end{aligned}$$

from which \(K^{n + c + \widehat{\nu }}_{\mathbb {Z}_2}(\mathcal {B}_x)\) is determined immediately. \(\square \)

B Appendix: Bulk-edge correspondence of integer indices for \({\textsf {pg}}\)-symmetric Hamiltonians

There is another natural surjective index map \(K^{1 + \widehat{\nu }}_{\mathbb {Z}_2}(\mathcal {B})={\mathbb {Z}}\oplus {\mathbb {Z}}/2\rightarrow K^0(\mathcal {B}_y)\cong {\mathbb {Z}}\) which is most conveniently formulated using \(C^*\)-algebraic language, as briefly mentioned in Sect. 7.3. Namely, \(K^{1 + \widehat{\nu }}_{\mathbb {Z}_2}(\mathcal {B})\) is also the operator algebraic \(K_1(C^*({\textsf {pg}}))\). Now \({\textsf {pg}}\cong {\mathbb {Z}}_y\rtimes {\mathbb {Z}}_g\) where we have written \({\mathbb {Z}}_y\cong {\mathbb {Z}}\) and \({\mathbb {Z}}_g\cong {\mathbb {Z}}\) for the subgroups generated by vertical lattice translation and by glide reflection, respectively, and the semidirect product is given by the nontrivial reflection action of \({\mathbb {Z}}_g\) on \({\mathbb {Z}}_y\). We can rewrite

$$\begin{aligned} C^*({\textsf {pg}})\cong C^*({\mathbb {Z}}_y)\rtimes _\alpha {\mathbb {Z}}_g\cong C(\mathcal {B}_y)\rtimes _\alpha {\mathbb {Z}}_g \end{aligned}$$

as a crossed product in which \({\mathbb {Z}}_g\) acts on \(C(\mathcal {B}_y)\) by the reflection automorphism \(\alpha \) taking \((\alpha \cdot f)(k_y)=f(-k_y)\). The Pimsner–Voiculescu (PV) exact sequence [40] for this crossed product is

figure m

If we write \(K_1(C(\mathcal {B}_y))\cong {\mathbb {Z}}[u_y]\) with \(u_y\) the generating unitary corresponding to vertical translation (i.e. winds around the Fourier transformed space \(\mathcal {B}_y\) once), and \(K_0(C(\mathcal {B}_y))={\mathbb {Z}}[\mathbf{1}]\) with \(\mathbf{1}\) the generating trivial projection given by the identity, then the PV sequence simplifies to

figure n

in which \(\partial ^{(0)}_{\mathrm{PV}}\) is the zero map while the other \({\mathbb {Z}}\)-valued connecting “index” map

$$\begin{aligned} \partial ^{(1)}_{\mathrm{PV}}:K^{1 + \widehat{\nu }}_{\mathbb {Z}_2}(\mathcal {B})=K_1(C^*({\textsf {pg}}))\rightarrow K_0(C(\mathcal {B}_y))=K^0(\mathcal {B}_y) \end{aligned}$$

is surjective. The free generator of \(K_1(C^*({\textsf {pg}}))\cong {\mathbb {Z}}\oplus {\mathbb {Z}}/2\) can be taken to be the unitary corresponding to the generating glide reflection, i.e. the \([U_\mathrm{r}]\) of Sect. 3.2.1 specifying the Hamiltonian \(H_\mathrm{r}\) (this has winding number \(-1\) around \(\mathcal {B}_x\)).

Thus the index map \(\partial ^{(1)}_{\mathrm{PV}}\) counts the winding around \(\mathcal {B}_x\), and in our tight-binding model, we see from Fig. 6 that it has the analytic interpretation of counting the number of black zero modes (per unit cell) left behind after truncating to the half-space on the right side of a vertical edge. The PV connecting homomorphism, where available, is an important ingredient in the formulation of bulk-edge correspondences of weak phases via generalised Connes–Chern character formulae, as studied in [42]. From that point of view, \([U_\mathrm{r}]\) is a “weak” topological phase, but as the Klein phase in our \({\textsf {pg}}\) example shows, the notions of “weak” and “strong” topological insulators are somewhat blurred in the presence of crystallographic symmetries.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomi, K., Thiang, G.C. Crystallographic bulk-edge correspondence: glide reflections and twisted mod 2 indices. Lett Math Phys 109, 857–904 (2019). https://doi.org/10.1007/s11005-018-1129-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-018-1129-1

Keywords

Mathematics Subject Classification

Navigation